| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrgrim.v |
|
| 2 |
|
clnbgrgrimlem.w |
|
| 3 |
|
clnbgrgrimlem.e |
|
| 4 |
3
|
eleq2i |
|
| 5 |
|
eqid |
|
| 6 |
5
|
uhgredgiedgb |
|
| 7 |
4 6
|
bitrid |
|
| 8 |
7
|
adantl |
|
| 9 |
8
|
3ad2ant3 |
|
| 10 |
9
|
adantr |
|
| 11 |
|
sseq2 |
|
| 12 |
11
|
adantl |
|
| 13 |
|
simp1 |
|
| 14 |
|
simpr |
|
| 15 |
13 14
|
anim12i |
|
| 16 |
|
f1ocnvdm |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
simpl |
|
| 19 |
18
|
adantl |
|
| 20 |
17 19
|
jca |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
eqid |
|
| 23 |
22
|
uhgrfun |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
3ad2ant3 |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
|
simpl2l |
|
| 28 |
|
f1ocnvdm |
|
| 29 |
27 28
|
sylan |
|
| 30 |
26 29
|
jca |
|
| 31 |
22
|
iedgedg |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
adantr |
|
| 34 |
|
sseq2 |
|
| 35 |
34
|
adantl |
|
| 36 |
|
2fveq3 |
|
| 37 |
|
fveq2 |
|
| 38 |
37
|
imaeq2d |
|
| 39 |
36 38
|
eqeq12d |
|
| 40 |
39
|
rspcv |
|
| 41 |
40
|
adantl |
|
| 42 |
|
simpr |
|
| 43 |
|
simp1 |
|
| 44 |
42 43
|
anim12i |
|
| 45 |
44
|
adantr |
|
| 46 |
|
f1ocnvfv2 |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
fveqeq2d |
|
| 49 |
|
sseq2 |
|
| 50 |
49
|
adantl |
|
| 51 |
|
f1ofn |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
|
simpr3l |
|
| 54 |
|
simpl |
|
| 55 |
14
|
3ad2ant3 |
|
| 56 |
54 55
|
anim12i |
|
| 57 |
56 16
|
syl |
|
| 58 |
52 53 57
|
3jca |
|
| 59 |
58
|
adantr |
|
| 60 |
|
fnimapr |
|
| 61 |
59 60
|
syl |
|
| 62 |
56
|
adantr |
|
| 63 |
|
f1ocnvfv2 |
|
| 64 |
62 63
|
syl |
|
| 65 |
64
|
preq2d |
|
| 66 |
61 65
|
eqtr2d |
|
| 67 |
66
|
sseq1d |
|
| 68 |
|
f1of1 |
|
| 69 |
68
|
adantr |
|
| 70 |
69
|
ad2antrr |
|
| 71 |
53 57
|
prssd |
|
| 72 |
71
|
adantr |
|
| 73 |
|
simpr2l |
|
| 74 |
1 22
|
uhgrss |
|
| 75 |
73 74
|
sylan |
|
| 76 |
|
f1imass |
|
| 77 |
70 72 75 76
|
syl12anc |
|
| 78 |
77
|
biimpd |
|
| 79 |
67 78
|
sylbid |
|
| 80 |
79
|
adantr |
|
| 81 |
50 80
|
sylbid |
|
| 82 |
81
|
ex |
|
| 83 |
48 82
|
sylbid |
|
| 84 |
41 83
|
syld |
|
| 85 |
84
|
ex |
|
| 86 |
85
|
com23 |
|
| 87 |
86
|
3exp2 |
|
| 88 |
87
|
com25 |
|
| 89 |
88
|
expimpd |
|
| 90 |
89
|
3imp1 |
|
| 91 |
90
|
imp |
|
| 92 |
29 91
|
mpd |
|
| 93 |
92
|
imp |
|
| 94 |
33 35 93
|
rspcedvd |
|
| 95 |
94
|
olcd |
|
| 96 |
|
eqid |
|
| 97 |
1 96
|
clnbgrel |
|
| 98 |
21 95 97
|
sylanbrc |
|
| 99 |
98
|
ex |
|
| 100 |
99
|
adantr |
|
| 101 |
12 100
|
sylbid |
|
| 102 |
101
|
ex |
|
| 103 |
102
|
rexlimdva |
|
| 104 |
10 103
|
sylbid |
|
| 105 |
104
|
impd |
|
| 106 |
105
|
3exp1 |
|
| 107 |
106
|
exlimdv |
|
| 108 |
107
|
imp |
|
| 109 |
1 2 22 5
|
grimprop |
|
| 110 |
108 109
|
syl11 |
|
| 111 |
110
|
3imp1 |
|
| 112 |
|
fveqeq2 |
|
| 113 |
112
|
adantl |
|
| 114 |
1 2
|
grimf1o |
|
| 115 |
114 14
|
anim12i |
|
| 116 |
115
|
3adant1 |
|
| 117 |
116
|
adantr |
|
| 118 |
117 63
|
syl |
|
| 119 |
111 113 118
|
rspcedvd |
|
| 120 |
119
|
ex |
|