Metamath Proof Explorer


Theorem clnbgrgrim

Description: Graph isomorphisms between hypergraphs map closed neighborhoods onto closed neighborhoods. (Contributed by AV, 2-Jun-2025)

Ref Expression
Hypothesis clnbgrgrim.v V = Vtx G
Assertion clnbgrgrim G UHGraph H UHGraph F G GraphIso H X V H ClNeighbVtx F X = F G ClNeighbVtx X

Proof

Step Hyp Ref Expression
1 clnbgrgrim.v V = Vtx G
2 fveqeq2 n = X F n = F X F X = F X
3 1 clnbgrvtxel X V X G ClNeighbVtx X
4 3 3ad2ant3 F G GraphIso H G UHGraph H UHGraph X V X G ClNeighbVtx X
5 eqidd F G GraphIso H G UHGraph H UHGraph X V F X = F X
6 2 4 5 rspcedvdw F G GraphIso H G UHGraph H UHGraph X V n G ClNeighbVtx X F n = F X
7 6 adantr F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H n G ClNeighbVtx X F n = F X
8 eqeq2 x = F X F n = x F n = F X
9 8 rexbidv x = F X n G ClNeighbVtx X F n = x n G ClNeighbVtx X F n = F X
10 7 9 syl5ibrcom F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H x = F X n G ClNeighbVtx X F n = x
11 simpl2 F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H G UHGraph H UHGraph
12 simpl1 F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H F G GraphIso H
13 simp3 F G GraphIso H G UHGraph H UHGraph X V X V
14 simpl x Vtx H F X Vtx H x Vtx H
15 13 14 anim12i F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H X V x Vtx H
16 eqid Vtx H = Vtx H
17 eqid Edg H = Edg H
18 1 16 17 clnbgrgrimlem G UHGraph H UHGraph F G GraphIso H X V x Vtx H e Edg H F X x e n G ClNeighbVtx X F n = x
19 11 12 15 18 syl3anc F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H e Edg H F X x e n G ClNeighbVtx X F n = x
20 19 expd F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H e Edg H F X x e n G ClNeighbVtx X F n = x
21 20 rexlimdv F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H e Edg H F X x e n G ClNeighbVtx X F n = x
22 10 21 jaod F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H x = F X e Edg H F X x e n G ClNeighbVtx X F n = x
23 22 expimpd F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H x = F X e Edg H F X x e n G ClNeighbVtx X F n = x
24 eqid iEdg G = iEdg G
25 eqid iEdg H = iEdg H
26 1 16 24 25 grimprop F G GraphIso H F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i
27 f1of F : V 1-1 onto Vtx H F : V Vtx H
28 27 adantr F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i F : V Vtx H
29 28 3ad2ant1 F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F : V Vtx H
30 29 ad2antrr F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x F : V Vtx H
31 1 clnbgrisvtx n G ClNeighbVtx X n V
32 31 adantl F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X n V
33 32 adantr F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x n V
34 30 33 ffvelcdmd F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x F n Vtx H
35 eleq1 x = F n x Vtx H F n Vtx H
36 35 eqcoms F n = x x Vtx H F n Vtx H
37 36 adantl F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x Vtx H F n Vtx H
38 34 37 mpbird F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x Vtx H
39 simp3 F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V X V
40 29 39 ffvelcdmd F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F X Vtx H
41 40 ad2antrr F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x F X Vtx H
42 eqid Edg G = Edg G
43 1 42 clnbgrel n G ClNeighbVtx X n V X V n = X k Edg G X n k
44 fveq2 n = X F n = F X
45 44 orcd n = X F n = F X e Edg H F X F n e
46 45 2a1d n = X n V X V F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
47 24 uhgredgiedgb G UHGraph k Edg G j dom iEdg G k = iEdg G j
48 47 adantr G UHGraph H UHGraph k Edg G j dom iEdg G k = iEdg G j
49 48 3ad2ant2 F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j
50 49 biimpa F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j
51 2fveq3 i = j iEdg H g i = iEdg H g j
52 fveq2 i = j iEdg G i = iEdg G j
53 52 imaeq2d i = j F iEdg G i = F iEdg G j
54 51 53 eqeq12d i = j iEdg H g i = F iEdg G i iEdg H g j = F iEdg G j
55 54 rspcv j dom iEdg G i dom iEdg G iEdg H g i = F iEdg G i iEdg H g j = F iEdg G j
56 55 3ad2ant3 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G i dom iEdg G iEdg H g i = F iEdg G i iEdg H g j = F iEdg G j
57 sseq2 k = iEdg G j X n k X n iEdg G j
58 57 3ad2ant3 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j k = iEdg G j X n k X n iEdg G j
59 sseq2 e = iEdg H g j F X F n e F X F n iEdg H g j
60 25 uhgrfun H UHGraph Fun iEdg H
61 60 adantl G UHGraph H UHGraph Fun iEdg H
62 61 3ad2ant3 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph Fun iEdg H
63 f1of g : dom iEdg G 1-1 onto dom iEdg H g : dom iEdg G dom iEdg H
64 63 adantl F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H g : dom iEdg G dom iEdg H
65 64 3ad2ant1 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph g : dom iEdg G dom iEdg H
66 65 ffvelcdmda F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph j dom iEdg G g j dom iEdg H
67 25 iedgedg Fun iEdg H g j dom iEdg H iEdg H g j Edg H
68 62 66 67 syl2an2r F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph j dom iEdg G iEdg H g j Edg H
69 68 3adant2 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j Edg H
70 69 adantr F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j iEdg H g j Edg H
71 70 3ad2ant1 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V iEdg H g j Edg H
72 f1ofn F : V 1-1 onto Vtx H F Fn V
73 72 adantr F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H F Fn V
74 73 3ad2ant1 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph F Fn V
75 74 3ad2ant1 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G F Fn V
76 75 adantr F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j F Fn V
77 pm3.22 n V X V X V n V
78 76 77 anim12i F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j n V X V F Fn V X V n V
79 78 3adant2 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V F Fn V X V n V
80 3anass F Fn V X V n V F Fn V X V n V
81 79 80 sylibr F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V F Fn V X V n V
82 fnimapr F Fn V X V n V F X n = F X F n
83 81 82 syl F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V F X n = F X F n
84 imass2 X n iEdg G j F X n F iEdg G j
85 84 3ad2ant2 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V F X n F iEdg G j
86 83 85 eqsstrrd F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V F X F n F iEdg G j
87 simp1r F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V iEdg H g j = F iEdg G j
88 86 87 sseqtrrd F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V F X F n iEdg H g j
89 59 71 88 rspcedvdw F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V e Edg H F X F n e
90 89 3exp F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j X n iEdg G j n V X V e Edg H F X F n e
91 90 3adant3 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j k = iEdg G j X n iEdg G j n V X V e Edg H F X F n e
92 58 91 sylbid F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j k = iEdg G j X n k n V X V e Edg H F X F n e
93 92 3exp F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G iEdg H g j = F iEdg G j k = iEdg G j X n k n V X V e Edg H F X F n e
94 56 93 syld F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G i dom iEdg G iEdg H g i = F iEdg G i k = iEdg G j X n k n V X V e Edg H F X F n e
95 94 3exp F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V j dom iEdg G i dom iEdg G iEdg H g i = F iEdg G i k = iEdg G j X n k n V X V e Edg H F X F n e
96 95 com34 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V i dom iEdg G iEdg H g i = F iEdg G i j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
97 96 3exp F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H k Edg G G UHGraph H UHGraph X V i dom iEdg G iEdg H g i = F iEdg G i j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
98 97 com25 F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
99 98 expimpd F : V 1-1 onto Vtx H g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
100 99 exlimdv F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
101 100 imp F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
102 101 3imp F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
103 102 imp31 F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
104 103 rexlimdva F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G j dom iEdg G k = iEdg G j X n k n V X V e Edg H F X F n e
105 50 104 mpd F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G X n k n V X V e Edg H F X F n e
106 105 ex F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V k Edg G X n k n V X V e Edg H F X F n e
107 106 com14 n V X V k Edg G X n k F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V e Edg H F X F n e
108 107 imp n V X V k Edg G X n k F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V e Edg H F X F n e
109 108 3imp n V X V k Edg G X n k F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V e Edg H F X F n e
110 109 olcd n V X V k Edg G X n k F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
111 110 3exp n V X V k Edg G X n k F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
112 111 rexlimdva n V X V k Edg G X n k F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
113 112 com12 k Edg G X n k n V X V F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
114 46 113 jaoi n = X k Edg G X n k n V X V F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
115 114 impcom n V X V n = X k Edg G X n k F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
116 43 115 sylbi n G ClNeighbVtx X F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V F n = F X e Edg H F X F n e
117 116 impcom F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = F X e Edg H F X F n e
118 117 adantr F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x F n = F X e Edg H F X F n e
119 eqeq1 x = F n x = F X F n = F X
120 preq2 x = F n F X x = F X F n
121 120 sseq1d x = F n F X x e F X F n e
122 121 rexbidv x = F n e Edg H F X x e e Edg H F X F n e
123 119 122 orbi12d x = F n x = F X e Edg H F X x e F n = F X e Edg H F X F n e
124 123 eqcoms F n = x x = F X e Edg H F X x e F n = F X e Edg H F X F n e
125 124 adantl F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x = F X e Edg H F X x e F n = F X e Edg H F X F n e
126 118 125 mpbird F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x = F X e Edg H F X x e
127 38 41 126 jca31 F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x Vtx H F X Vtx H x = F X e Edg H F X x e
128 127 ex F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x Vtx H F X Vtx H x = F X e Edg H F X x e
129 128 rexlimdva F : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H g i = F iEdg G i G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x Vtx H F X Vtx H x = F X e Edg H F X x e
130 26 129 syl3an1 F G GraphIso H G UHGraph H UHGraph X V n G ClNeighbVtx X F n = x x Vtx H F X Vtx H x = F X e Edg H F X x e
131 23 130 impbid F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H x = F X e Edg H F X x e n G ClNeighbVtx X F n = x
132 131 3exp F G GraphIso H G UHGraph H UHGraph X V x Vtx H F X Vtx H x = F X e Edg H F X x e n G ClNeighbVtx X F n = x
133 132 impcom G UHGraph H UHGraph F G GraphIso H X V x Vtx H F X Vtx H x = F X e Edg H F X x e n G ClNeighbVtx X F n = x
134 133 imp G UHGraph H UHGraph F G GraphIso H X V x Vtx H F X Vtx H x = F X e Edg H F X x e n G ClNeighbVtx X F n = x
135 16 17 clnbgrel x H ClNeighbVtx F X x Vtx H F X Vtx H x = F X e Edg H F X x e
136 135 a1i G UHGraph H UHGraph F G GraphIso H X V x H ClNeighbVtx F X x Vtx H F X Vtx H x = F X e Edg H F X x e
137 1 16 grimf1o F G GraphIso H F : V 1-1 onto Vtx H
138 137 72 syl F G GraphIso H F Fn V
139 138 adantl G UHGraph H UHGraph F G GraphIso H F Fn V
140 1 clnbgrssvtx G ClNeighbVtx X V
141 140 a1i X V G ClNeighbVtx X V
142 fvelimab F Fn V G ClNeighbVtx X V x F G ClNeighbVtx X n G ClNeighbVtx X F n = x
143 139 141 142 syl2an G UHGraph H UHGraph F G GraphIso H X V x F G ClNeighbVtx X n G ClNeighbVtx X F n = x
144 134 136 143 3bitr4d G UHGraph H UHGraph F G GraphIso H X V x H ClNeighbVtx F X x F G ClNeighbVtx X
145 144 eqrdv G UHGraph H UHGraph F G GraphIso H X V H ClNeighbVtx F X = F G ClNeighbVtx X