| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
fveqeq2 |
⊢ ( 𝑛 = 𝑋 → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 3 |
1
|
clnbgrvtxel |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 4 |
3
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 5 |
|
eqidd |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 6 |
2 4 5
|
rspcedvdw |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 8 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 9 |
8
|
rexbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) → ( ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 10 |
7 9
|
syl5ibrcom |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝑥 = ( 𝐹 ‘ 𝑋 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 11 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 12 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 13 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 14 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) → 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) |
| 15 |
13 14
|
anim12i |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 16 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 17 |
|
eqid |
⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) |
| 18 |
1 16 17
|
clnbgrgrimlem |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝑒 ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 19 |
11 12 15 18
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝑒 ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 20 |
19
|
expd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝑒 ∈ ( Edg ‘ 𝐻 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) ) |
| 21 |
20
|
rexlimdv |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 22 |
10 21
|
jaod |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 23 |
22
|
expimpd |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 24 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 25 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
| 26 |
1 16 24 25
|
grimprop |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 27 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 31 |
1
|
clnbgrisvtx |
⊢ ( 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) → 𝑛 ∈ 𝑉 ) |
| 32 |
31
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) → 𝑛 ∈ 𝑉 ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → 𝑛 ∈ 𝑉 ) |
| 34 |
30 33
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 35 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 36 |
35
|
eqcoms |
⊢ ( ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 38 |
34 37
|
mpbird |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) |
| 39 |
|
simp3 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 40 |
29 39
|
ffvelcdmd |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 42 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 43 |
1 42
|
clnbgrel |
⊢ ( 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑋 ∨ ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 ) ) ) |
| 44 |
|
fveq2 |
⊢ ( 𝑛 = 𝑋 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 45 |
44
|
orcd |
⊢ ( 𝑛 = 𝑋 → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 46 |
45
|
2a1d |
⊢ ( 𝑛 = 𝑋 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 47 |
24
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 49 |
48
|
3ad2ant2 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 50 |
49
|
biimpa |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 51 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 53 |
52
|
imaeq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 54 |
51 53
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 55 |
54
|
rspcv |
⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 56 |
55
|
3ad2ant3 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 57 |
|
sseq2 |
⊢ ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 ↔ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 58 |
57
|
3ad2ant3 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 ↔ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 59 |
|
sseq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ↔ { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 60 |
25
|
uhgrfun |
⊢ ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 62 |
61
|
3ad2ant3 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 63 |
|
f1of |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 65 |
64
|
3ad2ant1 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 66 |
65
|
ffvelcdmda |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 67 |
25
|
iedgedg |
⊢ ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 68 |
62 66 67
|
syl2an2r |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 69 |
68
|
3adant2 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 71 |
70
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 72 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 Fn 𝑉 ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 Fn 𝑉 ) |
| 74 |
73
|
3ad2ant1 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → 𝐹 Fn 𝑉 ) |
| 75 |
74
|
3ad2ant1 |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐹 Fn 𝑉 ) |
| 76 |
75
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) → 𝐹 Fn 𝑉 ) |
| 77 |
|
pm3.22 |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
| 78 |
76 77
|
anim12i |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 79 |
78
|
3adant2 |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 80 |
|
3anass |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 81 |
79 80
|
sylibr |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
| 82 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 83 |
81 82
|
syl |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 84 |
|
imass2 |
⊢ ( { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 85 |
84
|
3ad2ant2 |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 86 |
83 85
|
eqsstrrd |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 87 |
|
simp1r |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 88 |
86 87
|
sseqtrrd |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
| 89 |
59 71 88
|
rspcedvdw |
⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) |
| 90 |
89
|
3exp |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) → ( { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 91 |
90
|
3adant3 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 92 |
58 91
|
sylbid |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 93 |
92
|
3exp |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) |
| 94 |
56 93
|
syld |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) |
| 95 |
94
|
3exp |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → ( 𝑋 ∈ 𝑉 → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) |
| 96 |
95
|
com34 |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → ( 𝑋 ∈ 𝑉 → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) |
| 97 |
96
|
3exp |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 98 |
97
|
com25 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 99 |
98
|
expimpd |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 100 |
99
|
exlimdv |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 101 |
100
|
imp |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) |
| 102 |
101
|
3imp |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) |
| 103 |
102
|
imp31 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 104 |
103
|
rexlimdva |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 105 |
50 104
|
mpd |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 106 |
105
|
ex |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 107 |
106
|
com14 |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 108 |
107
|
imp |
⊢ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 109 |
108
|
3imp |
⊢ ( ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑋 , 𝑛 } ⊆ 𝑘 ∧ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) |
| 110 |
109
|
olcd |
⊢ ( ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑋 , 𝑛 } ⊆ 𝑘 ∧ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 111 |
110
|
3exp |
⊢ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 112 |
111
|
rexlimdva |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 113 |
112
|
com12 |
⊢ ( ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 114 |
46 113
|
jaoi |
⊢ ( ( 𝑛 = 𝑋 ∨ ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 115 |
114
|
impcom |
⊢ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑋 ∨ ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 ) ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 116 |
43 115
|
sylbi |
⊢ ( 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 117 |
116
|
impcom |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 118 |
117
|
adantr |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 119 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 120 |
|
preq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → { ( 𝐹 ‘ 𝑋 ) , 𝑥 } = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 121 |
120
|
sseq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ↔ { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 122 |
121
|
rexbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 123 |
119 122
|
orbi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ↔ ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 124 |
123
|
eqcoms |
⊢ ( ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ↔ ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 125 |
124
|
adantl |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ↔ ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 126 |
118 125
|
mpbird |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) |
| 127 |
38 41 126
|
jca31 |
⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) |
| 128 |
127
|
ex |
⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 129 |
128
|
rexlimdva |
⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 130 |
26 129
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 131 |
23 130
|
impbid |
⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 132 |
131
|
3exp |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) ) ) |
| 133 |
132
|
impcom |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝑋 ∈ 𝑉 → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) ) |
| 134 |
133
|
imp |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 135 |
16 17
|
clnbgrel |
⊢ ( 𝑥 ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) |
| 136 |
135
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 137 |
1 16
|
grimf1o |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 138 |
137 72
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 Fn 𝑉 ) |
| 139 |
138
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 Fn 𝑉 ) |
| 140 |
1
|
clnbgrssvtx |
⊢ ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ 𝑉 |
| 141 |
140
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ 𝑉 ) |
| 142 |
|
fvelimab |
⊢ ( ( 𝐹 Fn 𝑉 ∧ ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ 𝑉 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 143 |
139 141 142
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 144 |
134 136 143
|
3bitr4d |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) ↔ 𝑥 ∈ ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 145 |
144
|
eqrdv |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |