Metamath Proof Explorer


Theorem grimedg

Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 7-Jun-2025)

Ref Expression
Hypotheses grimedg.v 𝑉 = ( Vtx ‘ 𝐺 )
grimedg.i 𝐼 = ( Edg ‘ 𝐺 )
grimedg.e 𝐸 = ( Edg ‘ 𝐻 )
Assertion grimedg ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 grimedg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 grimedg.i 𝐼 = ( Edg ‘ 𝐺 )
3 grimedg.e 𝐸 = ( Edg ‘ 𝐻 )
4 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
5 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
6 eqid ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 )
7 1 4 5 6 grimprop ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
8 2 eleq2i ( 𝐾𝐼𝐾 ∈ ( Edg ‘ 𝐺 ) )
9 5 uhgredgiedgb ( 𝐺 ∈ UHGraph → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
10 9 ad2antll ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
11 8 10 bitrid ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾𝐼 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
12 2fveq3 ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) )
13 fveq2 ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) )
14 13 imaeq2d ( 𝑖 = 𝑘 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
15 12 14 eqeq12d ( 𝑖 = 𝑘 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) )
16 15 rspcv ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) )
17 16 adantl ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) )
18 6 uhgrfun ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) )
19 18 ad2antrr ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → Fun ( iEdg ‘ 𝐻 ) )
20 f1of ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
21 20 ad2antll ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
22 simplr ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) )
23 21 22 ffvelcdmd ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) )
24 6 iedgedg ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) )
25 24 3 eleqtrrdi ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ 𝐸 )
26 19 23 25 syl2an2r ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ 𝐸 )
27 eleq1 ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ 𝐸 ) )
28 27 eqcoms ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ 𝐸 ) )
29 26 28 syl5ibrcom ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) )
30 29 ex ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) )
31 30 com23 ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) )
32 17 31 syld ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) )
33 32 com13 ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) )
34 33 impr ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) )
35 34 impl ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 )
36 35 adantr ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 )
37 imaeq2 ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
38 37 eleq1d ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹𝐾 ) ∈ 𝐸 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) )
39 38 adantl ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹𝐾 ) ∈ 𝐸 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) )
40 36 39 mpbird ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹𝐾 ) ∈ 𝐸 )
41 1 5 uhgrss ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 )
42 41 ex ( 𝐺 ∈ UHGraph → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) )
43 42 ad2antll ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) )
44 43 imp ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 )
45 44 adantr ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 )
46 sseq1 ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐾𝑉 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) )
47 46 adantl ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐾𝑉 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) )
48 45 47 mpbird ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → 𝐾𝑉 )
49 40 48 jca ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) )
50 49 ex ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) )
51 50 rexlimdva ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) )
52 11 51 sylbid ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾𝐼 → ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) )
53 3 eleq2i ( ( 𝐹𝐾 ) ∈ 𝐸 ↔ ( 𝐹𝐾 ) ∈ ( Edg ‘ 𝐻 ) )
54 6 uhgredgiedgb ( 𝐻 ∈ UHGraph → ( ( 𝐹𝐾 ) ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
55 54 ad2antrl ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( 𝐹𝐾 ) ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
56 53 55 bitrid ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( 𝐹𝐾 ) ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
57 f1ofo ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) )
58 57 adantr ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) )
59 58 ad2antlr ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) )
60 foelrn ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗𝑙 ) )
61 59 60 sylan ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗𝑙 ) )
62 2fveq3 ( 𝑖 = 𝑙 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) )
63 fveq2 ( 𝑖 = 𝑙 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) )
64 63 imaeq2d ( 𝑖 = 𝑙 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) )
65 62 64 eqeq12d ( 𝑖 = 𝑙 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) )
66 65 rspcv ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) )
67 66 adantl ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) )
68 fveq2 ( 𝑘 = ( 𝑗𝑙 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) )
69 68 eqeq2d ( 𝑘 = ( 𝑗𝑙 ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ) )
70 69 ad2antll ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ) )
71 simpl ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → 𝐻 ∈ UHGraph )
72 71 ad2antrl ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → 𝐻 ∈ UHGraph )
73 simplrr ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) )
74 eleq1 ( 𝑘 = ( 𝑗𝑙 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ↔ ( 𝑗𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) ) )
75 74 ad2antll ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ↔ ( 𝑗𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) ) )
76 73 75 mpbid ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( 𝑗𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) )
77 4 6 uhgrss ( ( 𝐻 ∈ UHGraph ∧ ( 𝑗𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) )
78 72 76 77 syl2an2r ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) )
79 78 ad2antrr ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) )
80 sseq1 ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) → ( ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) ) )
81 80 adantl ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ) → ( ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) ) )
82 79 81 mpbird ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ) → ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) )
83 eqeq2 ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ↔ ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) )
84 83 adantl ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ↔ ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) )
85 f1of1 ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉1-1→ ( Vtx ‘ 𝐻 ) )
86 85 ad3antrrr ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → 𝐹 : 𝑉1-1→ ( Vtx ‘ 𝐻 ) )
87 86 ad3antrrr ( ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾𝑉 ) → 𝐹 : 𝑉1-1→ ( Vtx ‘ 𝐻 ) )
88 simplr ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → 𝐺 ∈ UHGraph )
89 88 adantl ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → 𝐺 ∈ UHGraph )
90 simpl ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) → 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) )
91 1 5 uhgrss ( ( 𝐺 ∈ UHGraph ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 )
92 89 90 91 syl2an ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 )
93 92 ad2antrr ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 )
94 93 anim1ci ( ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾𝑉 ) → ( 𝐾𝑉 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 ) )
95 f1imaeq ( ( 𝐹 : 𝑉1-1→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐾𝑉 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 ) ) → ( ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ↔ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) )
96 87 94 95 syl2anc ( ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾𝑉 ) → ( ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ↔ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) )
97 5 uhgrfun ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) )
98 97 ad2antlr ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → Fun ( iEdg ‘ 𝐺 ) )
99 98 adantl ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → Fun ( iEdg ‘ 𝐺 ) )
100 5 iedgedg ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ ( Edg ‘ 𝐺 ) )
101 99 90 100 syl2an ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ ( Edg ‘ 𝐺 ) )
102 101 2 eleqtrrdi ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ 𝐼 )
103 eleq1 ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) → ( 𝐾𝐼 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ 𝐼 ) )
104 102 103 syl5ibrcom ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) → 𝐾𝐼 ) )
105 104 ad3antrrr ( ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾𝑉 ) → ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) → 𝐾𝐼 ) )
106 96 105 sylbid ( ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾𝑉 ) → ( ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → 𝐾𝐼 ) )
107 106 ex ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) → ( 𝐾𝑉 → ( ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → 𝐾𝐼 ) ) )
108 107 com23 ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) → ( ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) )
109 108 ex ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
110 109 com23 ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
111 84 110 sylbid ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) → ( ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
112 111 imp ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ) → ( ( 𝐹𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( 𝐾𝑉𝐾𝐼 ) ) )
113 82 112 mpd ( ( ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) ) → ( 𝐾𝑉𝐾𝐼 ) )
114 113 exp31 ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
115 114 com23 ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
116 70 115 sylbid ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
117 116 exp31 ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) ) ) )
118 117 com23 ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) ) ) )
119 118 com24 ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) ) ) )
120 119 3imp ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗𝑙 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
121 120 expdimp ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑘 = ( 𝑗𝑙 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
122 67 121 syl5d ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑘 = ( 𝑗𝑙 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
123 122 rexlimdva ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗𝑙 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
124 123 3exp ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗𝑙 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐾𝑉𝐾𝐼 ) ) ) ) ) )
125 124 com25 ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗𝑙 ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾𝑉𝐾𝐼 ) ) ) ) ) )
126 125 impr ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗𝑙 ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾𝑉𝐾𝐼 ) ) ) ) )
127 126 impl ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗𝑙 ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾𝑉𝐾𝐼 ) ) ) )
128 61 127 mpd ( ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾𝑉𝐾𝐼 ) ) )
129 128 rexlimdva ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾𝑉𝐾𝐼 ) ) )
130 56 129 sylbid ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( 𝐹𝐾 ) ∈ 𝐸 → ( 𝐾𝑉𝐾𝐼 ) ) )
131 130 impd ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) → 𝐾𝐼 ) )
132 52 131 impbid ( ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) )
133 132 exp31 ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) ) ) )
134 133 exlimdv ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) ) ) )
135 134 imp ( ( 𝐹 : 𝑉1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) ) )
136 7 135 syl ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) ) )
137 136 expd ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐻 ∈ UHGraph → ( 𝐺 ∈ UHGraph → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) ) ) )
138 137 com13 ( 𝐺 ∈ UHGraph → ( 𝐻 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) ) ) )
139 138 3imp ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) )