| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grimedg.v |
|- V = ( Vtx ` G ) |
| 2 |
|
grimedg.i |
|- I = ( Edg ` G ) |
| 3 |
|
grimedg.e |
|- E = ( Edg ` H ) |
| 4 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 6 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 7 |
1 4 5 6
|
grimprop |
|- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 8 |
2
|
eleq2i |
|- ( K e. I <-> K e. ( Edg ` G ) ) |
| 9 |
5
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 10 |
9
|
ad2antll |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 11 |
8 10
|
bitrid |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. I <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 12 |
|
2fveq3 |
|- ( i = k -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) ) |
| 13 |
|
fveq2 |
|- ( i = k -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` k ) ) |
| 14 |
13
|
imaeq2d |
|- ( i = k -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
| 15 |
12 14
|
eqeq12d |
|- ( i = k -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 16 |
15
|
rspcv |
|- ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 18 |
6
|
uhgrfun |
|- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> Fun ( iEdg ` H ) ) |
| 20 |
|
f1of |
|- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 21 |
20
|
ad2antll |
|- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 22 |
|
simplr |
|- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> k e. dom ( iEdg ` G ) ) |
| 23 |
21 22
|
ffvelcdmd |
|- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> ( j ` k ) e. dom ( iEdg ` H ) ) |
| 24 |
6
|
iedgedg |
|- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 25 |
24 3
|
eleqtrrdi |
|- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) |
| 26 |
19 23 25
|
syl2an2r |
|- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) |
| 27 |
|
eleq1 |
|- ( ( F " ( ( iEdg ` G ) ` k ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. E <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) ) |
| 28 |
27
|
eqcoms |
|- ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. E <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. E ) ) |
| 29 |
26 28
|
syl5ibrcom |
|- ( ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 30 |
29
|
ex |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 31 |
30
|
com23 |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 32 |
17 31
|
syld |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 33 |
32
|
com13 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) ) |
| 34 |
33
|
impr |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 35 |
34
|
impl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) |
| 36 |
35
|
adantr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) |
| 37 |
|
imaeq2 |
|- ( K = ( ( iEdg ` G ) ` k ) -> ( F " K ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
| 38 |
37
|
eleq1d |
|- ( K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. E <-> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 39 |
38
|
adantl |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( F " K ) e. E <-> ( F " ( ( iEdg ` G ) ` k ) ) e. E ) ) |
| 40 |
36 39
|
mpbird |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F " K ) e. E ) |
| 41 |
1 5
|
uhgrss |
|- ( ( G e. UHGraph /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` k ) C_ V ) |
| 42 |
41
|
ex |
|- ( G e. UHGraph -> ( k e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` k ) C_ V ) ) |
| 43 |
42
|
ad2antll |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( k e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` k ) C_ V ) ) |
| 44 |
43
|
imp |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` k ) C_ V ) |
| 45 |
44
|
adantr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( iEdg ` G ) ` k ) C_ V ) |
| 46 |
|
sseq1 |
|- ( K = ( ( iEdg ` G ) ` k ) -> ( K C_ V <-> ( ( iEdg ` G ) ` k ) C_ V ) ) |
| 47 |
46
|
adantl |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( K C_ V <-> ( ( iEdg ` G ) ` k ) C_ V ) ) |
| 48 |
45 47
|
mpbird |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> K C_ V ) |
| 49 |
40 48
|
jca |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( F " K ) e. E /\ K C_ V ) ) |
| 50 |
49
|
ex |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` G ) ) -> ( K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 51 |
50
|
rexlimdva |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 52 |
11 51
|
sylbid |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. I -> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 53 |
3
|
eleq2i |
|- ( ( F " K ) e. E <-> ( F " K ) e. ( Edg ` H ) ) |
| 54 |
6
|
uhgredgiedgb |
|- ( H e. UHGraph -> ( ( F " K ) e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) ) ) |
| 55 |
54
|
ad2antrl |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( F " K ) e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) ) ) |
| 56 |
53 55
|
bitrid |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( F " K ) e. E <-> E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) ) ) |
| 57 |
|
f1ofo |
|- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) ) |
| 58 |
57
|
adantr |
|- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) ) |
| 59 |
58
|
ad2antlr |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) ) |
| 60 |
|
foelrn |
|- ( ( j : dom ( iEdg ` G ) -onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> E. l e. dom ( iEdg ` G ) k = ( j ` l ) ) |
| 61 |
59 60
|
sylan |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` H ) ) -> E. l e. dom ( iEdg ` G ) k = ( j ` l ) ) |
| 62 |
|
2fveq3 |
|- ( i = l -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) |
| 63 |
|
fveq2 |
|- ( i = l -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` l ) ) |
| 64 |
63
|
imaeq2d |
|- ( i = l -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) |
| 65 |
62 64
|
eqeq12d |
|- ( i = l -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 66 |
65
|
rspcv |
|- ( l e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 67 |
66
|
adantl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ l e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 68 |
|
fveq2 |
|- ( k = ( j ` l ) -> ( ( iEdg ` H ) ` k ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) |
| 69 |
68
|
eqeq2d |
|- ( k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) <-> ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) ) |
| 70 |
69
|
ad2antll |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) <-> ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) ) |
| 71 |
|
simpl |
|- ( ( H e. UHGraph /\ G e. UHGraph ) -> H e. UHGraph ) |
| 72 |
71
|
ad2antrl |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> H e. UHGraph ) |
| 73 |
|
simplrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> k e. dom ( iEdg ` H ) ) |
| 74 |
|
eleq1 |
|- ( k = ( j ` l ) -> ( k e. dom ( iEdg ` H ) <-> ( j ` l ) e. dom ( iEdg ` H ) ) ) |
| 75 |
74
|
ad2antll |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( k e. dom ( iEdg ` H ) <-> ( j ` l ) e. dom ( iEdg ` H ) ) ) |
| 76 |
73 75
|
mpbid |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( j ` l ) e. dom ( iEdg ` H ) ) |
| 77 |
4 6
|
uhgrss |
|- ( ( H e. UHGraph /\ ( j ` l ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) |
| 78 |
72 76 77
|
syl2an2r |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) |
| 79 |
78
|
ad2antrr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) |
| 80 |
|
sseq1 |
|- ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( ( F " K ) C_ ( Vtx ` H ) <-> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) ) |
| 81 |
80
|
adantl |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( ( F " K ) C_ ( Vtx ` H ) <-> ( ( iEdg ` H ) ` ( j ` l ) ) C_ ( Vtx ` H ) ) ) |
| 82 |
79 81
|
mpbird |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( F " K ) C_ ( Vtx ` H ) ) |
| 83 |
|
eqeq2 |
|- ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) <-> ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 84 |
83
|
adantl |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) <-> ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) ) ) |
| 85 |
|
f1of1 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 86 |
85
|
ad3antrrr |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 87 |
86
|
ad3antrrr |
|- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 88 |
|
simplr |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> G e. UHGraph ) |
| 89 |
88
|
adantl |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> G e. UHGraph ) |
| 90 |
|
simpl |
|- ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> l e. dom ( iEdg ` G ) ) |
| 91 |
1 5
|
uhgrss |
|- ( ( G e. UHGraph /\ l e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` l ) C_ V ) |
| 92 |
89 90 91
|
syl2an |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` G ) ` l ) C_ V ) |
| 93 |
92
|
ad2antrr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) -> ( ( iEdg ` G ) ` l ) C_ V ) |
| 94 |
93
|
anim1ci |
|- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( K C_ V /\ ( ( iEdg ` G ) ` l ) C_ V ) ) |
| 95 |
|
f1imaeq |
|- ( ( F : V -1-1-> ( Vtx ` H ) /\ ( K C_ V /\ ( ( iEdg ` G ) ` l ) C_ V ) ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) <-> K = ( ( iEdg ` G ) ` l ) ) ) |
| 96 |
87 94 95
|
syl2anc |
|- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) <-> K = ( ( iEdg ` G ) ` l ) ) ) |
| 97 |
5
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 98 |
97
|
ad2antlr |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> Fun ( iEdg ` G ) ) |
| 99 |
98
|
adantl |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> Fun ( iEdg ` G ) ) |
| 100 |
5
|
iedgedg |
|- ( ( Fun ( iEdg ` G ) /\ l e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` l ) e. ( Edg ` G ) ) |
| 101 |
99 90 100
|
syl2an |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` G ) ` l ) e. ( Edg ` G ) ) |
| 102 |
101 2
|
eleqtrrdi |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( iEdg ` G ) ` l ) e. I ) |
| 103 |
|
eleq1 |
|- ( K = ( ( iEdg ` G ) ` l ) -> ( K e. I <-> ( ( iEdg ` G ) ` l ) e. I ) ) |
| 104 |
102 103
|
syl5ibrcom |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( K = ( ( iEdg ` G ) ` l ) -> K e. I ) ) |
| 105 |
104
|
ad3antrrr |
|- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( K = ( ( iEdg ` G ) ` l ) -> K e. I ) ) |
| 106 |
96 105
|
sylbid |
|- ( ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) /\ K C_ V ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> K e. I ) ) |
| 107 |
106
|
ex |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) -> ( K C_ V -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> K e. I ) ) ) |
| 108 |
107
|
com23 |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) C_ ( Vtx ` H ) ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) |
| 109 |
108
|
ex |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 110 |
109
|
com23 |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( K C_ V -> K e. I ) ) ) ) |
| 111 |
84 110
|
sylbid |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( K C_ V -> K e. I ) ) ) ) |
| 112 |
111
|
imp |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( ( F " K ) C_ ( Vtx ` H ) -> ( K C_ V -> K e. I ) ) ) |
| 113 |
82 112
|
mpd |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) /\ ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) ) -> ( K C_ V -> K e. I ) ) |
| 114 |
113
|
exp31 |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 115 |
114
|
com23 |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` ( j ` l ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 116 |
70 115
|
sylbid |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 117 |
116
|
exp31 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 118 |
117
|
com23 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 119 |
118
|
com24 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 120 |
119
|
3imp |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> ( ( l e. dom ( iEdg ` G ) /\ k = ( j ` l ) ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 121 |
120
|
expdimp |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ l e. dom ( iEdg ` G ) ) -> ( k = ( j ` l ) -> ( ( ( iEdg ` H ) ` ( j ` l ) ) = ( F " ( ( iEdg ` G ) ` l ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 122 |
67 121
|
syl5d |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) /\ l e. dom ( iEdg ` G ) ) -> ( k = ( j ` l ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 123 |
122
|
rexlimdva |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( F " K ) = ( ( iEdg ` H ) ` k ) /\ ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( K C_ V -> K e. I ) ) ) ) |
| 124 |
123
|
3exp |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 125 |
124
|
com25 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) ) ) ) |
| 126 |
125
|
impr |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) ) ) |
| 127 |
126
|
impl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` H ) ) -> ( E. l e. dom ( iEdg ` G ) k = ( j ` l ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) ) |
| 128 |
61 127
|
mpd |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) |
| 129 |
128
|
rexlimdva |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( E. k e. dom ( iEdg ` H ) ( F " K ) = ( ( iEdg ` H ) ` k ) -> ( K C_ V -> K e. I ) ) ) |
| 130 |
56 129
|
sylbid |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( F " K ) e. E -> ( K C_ V -> K e. I ) ) ) |
| 131 |
130
|
impd |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( ( ( F " K ) e. E /\ K C_ V ) -> K e. I ) ) |
| 132 |
52 131
|
impbid |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( H e. UHGraph /\ G e. UHGraph ) ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 133 |
132
|
exp31 |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 134 |
133
|
exlimdv |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 135 |
134
|
imp |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) |
| 136 |
7 135
|
syl |
|- ( F e. ( G GraphIso H ) -> ( ( H e. UHGraph /\ G e. UHGraph ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) |
| 137 |
136
|
expd |
|- ( F e. ( G GraphIso H ) -> ( H e. UHGraph -> ( G e. UHGraph -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 138 |
137
|
com13 |
|- ( G e. UHGraph -> ( H e. UHGraph -> ( F e. ( G GraphIso H ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) ) ) |
| 139 |
138
|
3imp |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) |