Metamath Proof Explorer


Theorem grimedg

Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 7-Jun-2025)

Ref Expression
Hypotheses grimedg.v V = Vtx G
grimedg.i I = Edg G
grimedg.e E = Edg H
Assertion grimedg G UHGraph H UHGraph F G GraphIso H K I F K E K V

Proof

Step Hyp Ref Expression
1 grimedg.v V = Vtx G
2 grimedg.i I = Edg G
3 grimedg.e E = Edg H
4 eqid Vtx H = Vtx H
5 eqid iEdg G = iEdg G
6 eqid iEdg H = iEdg H
7 1 4 5 6 grimprop F G GraphIso H F : V 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i
8 2 eleq2i K I K Edg G
9 5 uhgredgiedgb G UHGraph K Edg G k dom iEdg G K = iEdg G k
10 9 ad2antll F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph K Edg G k dom iEdg G K = iEdg G k
11 8 10 bitrid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph K I k dom iEdg G K = iEdg G k
12 2fveq3 i = k iEdg H j i = iEdg H j k
13 fveq2 i = k iEdg G i = iEdg G k
14 13 imaeq2d i = k F iEdg G i = F iEdg G k
15 12 14 eqeq12d i = k iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
16 15 rspcv k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
17 16 adantl H UHGraph G UHGraph k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
18 6 uhgrfun H UHGraph Fun iEdg H
19 18 ad2antrr H UHGraph G UHGraph k dom iEdg G Fun iEdg H
20 f1of j : dom iEdg G 1-1 onto dom iEdg H j : dom iEdg G dom iEdg H
21 20 ad2antll H UHGraph G UHGraph k dom iEdg G F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H j : dom iEdg G dom iEdg H
22 simplr H UHGraph G UHGraph k dom iEdg G F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G
23 21 22 ffvelcdmd H UHGraph G UHGraph k dom iEdg G F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H j k dom iEdg H
24 6 iedgedg Fun iEdg H j k dom iEdg H iEdg H j k Edg H
25 24 3 eleqtrrdi Fun iEdg H j k dom iEdg H iEdg H j k E
26 19 23 25 syl2an2r H UHGraph G UHGraph k dom iEdg G F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H iEdg H j k E
27 eleq1 F iEdg G k = iEdg H j k F iEdg G k E iEdg H j k E
28 27 eqcoms iEdg H j k = F iEdg G k F iEdg G k E iEdg H j k E
29 26 28 syl5ibrcom H UHGraph G UHGraph k dom iEdg G F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H iEdg H j k = F iEdg G k F iEdg G k E
30 29 ex H UHGraph G UHGraph k dom iEdg G F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H iEdg H j k = F iEdg G k F iEdg G k E
31 30 com23 H UHGraph G UHGraph k dom iEdg G iEdg H j k = F iEdg G k F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F iEdg G k E
32 17 31 syld H UHGraph G UHGraph k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F iEdg G k E
33 32 com13 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G F iEdg G k E
34 33 impr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G F iEdg G k E
35 34 impl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G F iEdg G k E
36 35 adantr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k F iEdg G k E
37 imaeq2 K = iEdg G k F K = F iEdg G k
38 37 eleq1d K = iEdg G k F K E F iEdg G k E
39 38 adantl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k F K E F iEdg G k E
40 36 39 mpbird F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k F K E
41 1 5 uhgrss G UHGraph k dom iEdg G iEdg G k V
42 41 ex G UHGraph k dom iEdg G iEdg G k V
43 42 ad2antll F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G iEdg G k V
44 43 imp F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G iEdg G k V
45 44 adantr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k iEdg G k V
46 sseq1 K = iEdg G k K V iEdg G k V
47 46 adantl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k K V iEdg G k V
48 45 47 mpbird F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k K V
49 40 48 jca F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k F K E K V
50 49 ex F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k F K E K V
51 50 rexlimdva F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg G K = iEdg G k F K E K V
52 11 51 sylbid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph K I F K E K V
53 3 eleq2i F K E F K Edg H
54 6 uhgredgiedgb H UHGraph F K Edg H k dom iEdg H F K = iEdg H k
55 54 ad2antrl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph F K Edg H k dom iEdg H F K = iEdg H k
56 53 55 bitrid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph F K E k dom iEdg H F K = iEdg H k
57 f1ofo j : dom iEdg G 1-1 onto dom iEdg H j : dom iEdg G onto dom iEdg H
58 57 adantr j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i j : dom iEdg G onto dom iEdg H
59 58 ad2antlr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph j : dom iEdg G onto dom iEdg H
60 foelrn j : dom iEdg G onto dom iEdg H k dom iEdg H l dom iEdg G k = j l
61 59 60 sylan F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l
62 2fveq3 i = l iEdg H j i = iEdg H j l
63 fveq2 i = l iEdg G i = iEdg G l
64 63 imaeq2d i = l F iEdg G i = F iEdg G l
65 62 64 eqeq12d i = l iEdg H j i = F iEdg G i iEdg H j l = F iEdg G l
66 65 rspcv l dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i iEdg H j l = F iEdg G l
67 66 adantl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F K = iEdg H k H UHGraph G UHGraph k dom iEdg H l dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i iEdg H j l = F iEdg G l
68 fveq2 k = j l iEdg H k = iEdg H j l
69 68 eqeq2d k = j l F K = iEdg H k F K = iEdg H j l
70 69 ad2antll F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F K = iEdg H k F K = iEdg H j l
71 simpl H UHGraph G UHGraph H UHGraph
72 71 ad2antrl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H H UHGraph
73 simplrr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l k dom iEdg H
74 eleq1 k = j l k dom iEdg H j l dom iEdg H
75 74 ad2antll F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l k dom iEdg H j l dom iEdg H
76 73 75 mpbid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l j l dom iEdg H
77 4 6 uhgrss H UHGraph j l dom iEdg H iEdg H j l Vtx H
78 72 76 77 syl2an2r F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l Vtx H
79 78 ad2antrr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l iEdg H j l Vtx H
80 sseq1 F K = iEdg H j l F K Vtx H iEdg H j l Vtx H
81 80 adantl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l F K Vtx H iEdg H j l Vtx H
82 79 81 mpbird F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l F K Vtx H
83 eqeq2 iEdg H j l = F iEdg G l F K = iEdg H j l F K = F iEdg G l
84 83 adantl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l F K = F iEdg G l
85 f1of1 F : V 1-1 onto Vtx H F : V 1-1 Vtx H
86 85 ad3antrrr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F : V 1-1 Vtx H
87 86 ad3antrrr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H K V F : V 1-1 Vtx H
88 simplr H UHGraph G UHGraph k dom iEdg H G UHGraph
89 88 adantl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H G UHGraph
90 simpl l dom iEdg G k = j l l dom iEdg G
91 1 5 uhgrss G UHGraph l dom iEdg G iEdg G l V
92 89 90 91 syl2an F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg G l V
93 92 ad2antrr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H iEdg G l V
94 93 anim1ci F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H K V K V iEdg G l V
95 f1imaeq F : V 1-1 Vtx H K V iEdg G l V F K = F iEdg G l K = iEdg G l
96 87 94 95 syl2anc F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H K V F K = F iEdg G l K = iEdg G l
97 5 uhgrfun G UHGraph Fun iEdg G
98 97 ad2antlr H UHGraph G UHGraph k dom iEdg H Fun iEdg G
99 98 adantl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H Fun iEdg G
100 5 iedgedg Fun iEdg G l dom iEdg G iEdg G l Edg G
101 99 90 100 syl2an F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg G l Edg G
102 101 2 eleqtrrdi F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg G l I
103 eleq1 K = iEdg G l K I iEdg G l I
104 102 103 syl5ibrcom F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l K = iEdg G l K I
105 104 ad3antrrr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H K V K = iEdg G l K I
106 96 105 sylbid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H K V F K = F iEdg G l K I
107 106 ex F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H K V F K = F iEdg G l K I
108 107 com23 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H F K = F iEdg G l K V K I
109 108 ex F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K Vtx H F K = F iEdg G l K V K I
110 109 com23 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = F iEdg G l F K Vtx H K V K I
111 84 110 sylbid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l F K Vtx H K V K I
112 111 imp F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l F K Vtx H K V K I
113 82 112 mpd F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l K V K I
114 113 exp31 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l F K = iEdg H j l K V K I
115 114 com23 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F K = iEdg H j l iEdg H j l = F iEdg G l K V K I
116 70 115 sylbid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F K = iEdg H k iEdg H j l = F iEdg G l K V K I
117 116 exp31 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F K = iEdg H k iEdg H j l = F iEdg G l K V K I
118 117 com23 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H l dom iEdg G k = j l H UHGraph G UHGraph k dom iEdg H F K = iEdg H k iEdg H j l = F iEdg G l K V K I
119 118 com24 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F K = iEdg H k H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l K V K I
120 119 3imp F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F K = iEdg H k H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l K V K I
121 120 expdimp F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F K = iEdg H k H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l iEdg H j l = F iEdg G l K V K I
122 67 121 syl5d F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F K = iEdg H k H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l i dom iEdg G iEdg H j i = F iEdg G i K V K I
123 122 rexlimdva F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F K = iEdg H k H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l i dom iEdg G iEdg H j i = F iEdg G i K V K I
124 123 3exp F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H F K = iEdg H k H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l i dom iEdg G iEdg H j i = F iEdg G i K V K I
125 124 com25 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F K = iEdg H k K V K I
126 125 impr F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F K = iEdg H k K V K I
127 126 impl F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg H l dom iEdg G k = j l F K = iEdg H k K V K I
128 61 127 mpd F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg H F K = iEdg H k K V K I
129 128 rexlimdva F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph k dom iEdg H F K = iEdg H k K V K I
130 56 129 sylbid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph F K E K V K I
131 130 impd F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph F K E K V K I
132 52 131 impbid F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph K I F K E K V
133 132 exp31 F : V 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph K I F K E K V
134 133 exlimdv F : V 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph K I F K E K V
135 134 imp F : V 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i H UHGraph G UHGraph K I F K E K V
136 7 135 syl F G GraphIso H H UHGraph G UHGraph K I F K E K V
137 136 expd F G GraphIso H H UHGraph G UHGraph K I F K E K V
138 137 com13 G UHGraph H UHGraph F G GraphIso H K I F K E K V
139 138 3imp G UHGraph H UHGraph F G GraphIso H K I F K E K V