Step |
Hyp |
Ref |
Expression |
1 |
|
grimedg.v |
|
2 |
|
grimedg.i |
|
3 |
|
grimedg.e |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 4 5 6
|
grimprop |
|
8 |
2
|
eleq2i |
|
9 |
5
|
uhgredgiedgb |
|
10 |
9
|
ad2antll |
|
11 |
8 10
|
bitrid |
|
12 |
|
2fveq3 |
|
13 |
|
fveq2 |
|
14 |
13
|
imaeq2d |
|
15 |
12 14
|
eqeq12d |
|
16 |
15
|
rspcv |
|
17 |
16
|
adantl |
|
18 |
6
|
uhgrfun |
|
19 |
18
|
ad2antrr |
|
20 |
|
f1of |
|
21 |
20
|
ad2antll |
|
22 |
|
simplr |
|
23 |
21 22
|
ffvelcdmd |
|
24 |
6
|
iedgedg |
|
25 |
24 3
|
eleqtrrdi |
|
26 |
19 23 25
|
syl2an2r |
|
27 |
|
eleq1 |
|
28 |
27
|
eqcoms |
|
29 |
26 28
|
syl5ibrcom |
|
30 |
29
|
ex |
|
31 |
30
|
com23 |
|
32 |
17 31
|
syld |
|
33 |
32
|
com13 |
|
34 |
33
|
impr |
|
35 |
34
|
impl |
|
36 |
35
|
adantr |
|
37 |
|
imaeq2 |
|
38 |
37
|
eleq1d |
|
39 |
38
|
adantl |
|
40 |
36 39
|
mpbird |
|
41 |
1 5
|
uhgrss |
|
42 |
41
|
ex |
|
43 |
42
|
ad2antll |
|
44 |
43
|
imp |
|
45 |
44
|
adantr |
|
46 |
|
sseq1 |
|
47 |
46
|
adantl |
|
48 |
45 47
|
mpbird |
|
49 |
40 48
|
jca |
|
50 |
49
|
ex |
|
51 |
50
|
rexlimdva |
|
52 |
11 51
|
sylbid |
|
53 |
3
|
eleq2i |
|
54 |
6
|
uhgredgiedgb |
|
55 |
54
|
ad2antrl |
|
56 |
53 55
|
bitrid |
|
57 |
|
f1ofo |
|
58 |
57
|
adantr |
|
59 |
58
|
ad2antlr |
|
60 |
|
foelrn |
|
61 |
59 60
|
sylan |
|
62 |
|
2fveq3 |
|
63 |
|
fveq2 |
|
64 |
63
|
imaeq2d |
|
65 |
62 64
|
eqeq12d |
|
66 |
65
|
rspcv |
|
67 |
66
|
adantl |
|
68 |
|
fveq2 |
|
69 |
68
|
eqeq2d |
|
70 |
69
|
ad2antll |
|
71 |
|
simpl |
|
72 |
71
|
ad2antrl |
|
73 |
|
simplrr |
|
74 |
|
eleq1 |
|
75 |
74
|
ad2antll |
|
76 |
73 75
|
mpbid |
|
77 |
4 6
|
uhgrss |
|
78 |
72 76 77
|
syl2an2r |
|
79 |
78
|
ad2antrr |
|
80 |
|
sseq1 |
|
81 |
80
|
adantl |
|
82 |
79 81
|
mpbird |
|
83 |
|
eqeq2 |
|
84 |
83
|
adantl |
|
85 |
|
f1of1 |
|
86 |
85
|
ad3antrrr |
|
87 |
86
|
ad3antrrr |
|
88 |
|
simplr |
|
89 |
88
|
adantl |
|
90 |
|
simpl |
|
91 |
1 5
|
uhgrss |
|
92 |
89 90 91
|
syl2an |
|
93 |
92
|
ad2antrr |
|
94 |
93
|
anim1ci |
|
95 |
|
f1imaeq |
|
96 |
87 94 95
|
syl2anc |
|
97 |
5
|
uhgrfun |
|
98 |
97
|
ad2antlr |
|
99 |
98
|
adantl |
|
100 |
5
|
iedgedg |
|
101 |
99 90 100
|
syl2an |
|
102 |
101 2
|
eleqtrrdi |
|
103 |
|
eleq1 |
|
104 |
102 103
|
syl5ibrcom |
|
105 |
104
|
ad3antrrr |
|
106 |
96 105
|
sylbid |
|
107 |
106
|
ex |
|
108 |
107
|
com23 |
|
109 |
108
|
ex |
|
110 |
109
|
com23 |
|
111 |
84 110
|
sylbid |
|
112 |
111
|
imp |
|
113 |
82 112
|
mpd |
|
114 |
113
|
exp31 |
|
115 |
114
|
com23 |
|
116 |
70 115
|
sylbid |
|
117 |
116
|
exp31 |
|
118 |
117
|
com23 |
|
119 |
118
|
com24 |
|
120 |
119
|
3imp |
|
121 |
120
|
expdimp |
|
122 |
67 121
|
syl5d |
|
123 |
122
|
rexlimdva |
|
124 |
123
|
3exp |
|
125 |
124
|
com25 |
|
126 |
125
|
impr |
|
127 |
126
|
impl |
|
128 |
61 127
|
mpd |
|
129 |
128
|
rexlimdva |
|
130 |
56 129
|
sylbid |
|
131 |
130
|
impd |
|
132 |
52 131
|
impbid |
|
133 |
132
|
exp31 |
|
134 |
133
|
exlimdv |
|
135 |
134
|
imp |
|
136 |
7 135
|
syl |
|
137 |
136
|
expd |
|
138 |
137
|
com13 |
|
139 |
138
|
3imp |
|