| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grimedg.v |
|
| 2 |
|
grimedg.i |
|
| 3 |
|
grimedg.e |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 4 5 6
|
grimprop |
|
| 8 |
2
|
eleq2i |
|
| 9 |
5
|
uhgredgiedgb |
|
| 10 |
9
|
ad2antll |
|
| 11 |
8 10
|
bitrid |
|
| 12 |
|
2fveq3 |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
imaeq2d |
|
| 15 |
12 14
|
eqeq12d |
|
| 16 |
15
|
rspcv |
|
| 17 |
16
|
adantl |
|
| 18 |
6
|
uhgrfun |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
f1of |
|
| 21 |
20
|
ad2antll |
|
| 22 |
|
simplr |
|
| 23 |
21 22
|
ffvelcdmd |
|
| 24 |
6
|
iedgedg |
|
| 25 |
24 3
|
eleqtrrdi |
|
| 26 |
19 23 25
|
syl2an2r |
|
| 27 |
|
eleq1 |
|
| 28 |
27
|
eqcoms |
|
| 29 |
26 28
|
syl5ibrcom |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
com23 |
|
| 32 |
17 31
|
syld |
|
| 33 |
32
|
com13 |
|
| 34 |
33
|
impr |
|
| 35 |
34
|
impl |
|
| 36 |
35
|
adantr |
|
| 37 |
|
imaeq2 |
|
| 38 |
37
|
eleq1d |
|
| 39 |
38
|
adantl |
|
| 40 |
36 39
|
mpbird |
|
| 41 |
1 5
|
uhgrss |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
ad2antll |
|
| 44 |
43
|
imp |
|
| 45 |
44
|
adantr |
|
| 46 |
|
sseq1 |
|
| 47 |
46
|
adantl |
|
| 48 |
45 47
|
mpbird |
|
| 49 |
40 48
|
jca |
|
| 50 |
49
|
ex |
|
| 51 |
50
|
rexlimdva |
|
| 52 |
11 51
|
sylbid |
|
| 53 |
3
|
eleq2i |
|
| 54 |
6
|
uhgredgiedgb |
|
| 55 |
54
|
ad2antrl |
|
| 56 |
53 55
|
bitrid |
|
| 57 |
|
f1ofo |
|
| 58 |
57
|
adantr |
|
| 59 |
58
|
ad2antlr |
|
| 60 |
|
foelrn |
|
| 61 |
59 60
|
sylan |
|
| 62 |
|
2fveq3 |
|
| 63 |
|
fveq2 |
|
| 64 |
63
|
imaeq2d |
|
| 65 |
62 64
|
eqeq12d |
|
| 66 |
65
|
rspcv |
|
| 67 |
66
|
adantl |
|
| 68 |
|
fveq2 |
|
| 69 |
68
|
eqeq2d |
|
| 70 |
69
|
ad2antll |
|
| 71 |
|
simpl |
|
| 72 |
71
|
ad2antrl |
|
| 73 |
|
simplrr |
|
| 74 |
|
eleq1 |
|
| 75 |
74
|
ad2antll |
|
| 76 |
73 75
|
mpbid |
|
| 77 |
4 6
|
uhgrss |
|
| 78 |
72 76 77
|
syl2an2r |
|
| 79 |
78
|
ad2antrr |
|
| 80 |
|
sseq1 |
|
| 81 |
80
|
adantl |
|
| 82 |
79 81
|
mpbird |
|
| 83 |
|
eqeq2 |
|
| 84 |
83
|
adantl |
|
| 85 |
|
f1of1 |
|
| 86 |
85
|
ad3antrrr |
|
| 87 |
86
|
ad3antrrr |
|
| 88 |
|
simplr |
|
| 89 |
88
|
adantl |
|
| 90 |
|
simpl |
|
| 91 |
1 5
|
uhgrss |
|
| 92 |
89 90 91
|
syl2an |
|
| 93 |
92
|
ad2antrr |
|
| 94 |
93
|
anim1ci |
|
| 95 |
|
f1imaeq |
|
| 96 |
87 94 95
|
syl2anc |
|
| 97 |
5
|
uhgrfun |
|
| 98 |
97
|
ad2antlr |
|
| 99 |
98
|
adantl |
|
| 100 |
5
|
iedgedg |
|
| 101 |
99 90 100
|
syl2an |
|
| 102 |
101 2
|
eleqtrrdi |
|
| 103 |
|
eleq1 |
|
| 104 |
102 103
|
syl5ibrcom |
|
| 105 |
104
|
ad3antrrr |
|
| 106 |
96 105
|
sylbid |
|
| 107 |
106
|
ex |
|
| 108 |
107
|
com23 |
|
| 109 |
108
|
ex |
|
| 110 |
109
|
com23 |
|
| 111 |
84 110
|
sylbid |
|
| 112 |
111
|
imp |
|
| 113 |
82 112
|
mpd |
|
| 114 |
113
|
exp31 |
|
| 115 |
114
|
com23 |
|
| 116 |
70 115
|
sylbid |
|
| 117 |
116
|
exp31 |
|
| 118 |
117
|
com23 |
|
| 119 |
118
|
com24 |
|
| 120 |
119
|
3imp |
|
| 121 |
120
|
expdimp |
|
| 122 |
67 121
|
syl5d |
|
| 123 |
122
|
rexlimdva |
|
| 124 |
123
|
3exp |
|
| 125 |
124
|
com25 |
|
| 126 |
125
|
impr |
|
| 127 |
126
|
impl |
|
| 128 |
61 127
|
mpd |
|
| 129 |
128
|
rexlimdva |
|
| 130 |
56 129
|
sylbid |
|
| 131 |
130
|
impd |
|
| 132 |
52 131
|
impbid |
|
| 133 |
132
|
exp31 |
|
| 134 |
133
|
exlimdv |
|
| 135 |
134
|
imp |
|
| 136 |
7 135
|
syl |
|
| 137 |
136
|
expd |
|
| 138 |
137
|
com13 |
|
| 139 |
138
|
3imp |
|