| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrgrim.v |
|- V = ( Vtx ` G ) |
| 2 |
|
fveqeq2 |
|- ( n = X -> ( ( F ` n ) = ( F ` X ) <-> ( F ` X ) = ( F ` X ) ) ) |
| 3 |
1
|
clnbgrvtxel |
|- ( X e. V -> X e. ( G ClNeighbVtx X ) ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> X e. ( G ClNeighbVtx X ) ) |
| 5 |
|
eqidd |
|- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( F ` X ) = ( F ` X ) ) |
| 6 |
2 4 5
|
rspcedvdw |
|- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = ( F ` X ) ) |
| 7 |
6
|
adantr |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = ( F ` X ) ) |
| 8 |
|
eqeq2 |
|- ( x = ( F ` X ) -> ( ( F ` n ) = x <-> ( F ` n ) = ( F ` X ) ) ) |
| 9 |
8
|
rexbidv |
|- ( x = ( F ` X ) -> ( E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = ( F ` X ) ) ) |
| 10 |
7 9
|
syl5ibrcom |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( x = ( F ` X ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 11 |
|
simpl2 |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 12 |
|
simpl1 |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> F e. ( G GraphIso H ) ) |
| 13 |
|
simp3 |
|- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> X e. V ) |
| 14 |
|
simpl |
|- ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) -> x e. ( Vtx ` H ) ) |
| 15 |
13 14
|
anim12i |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( X e. V /\ x e. ( Vtx ` H ) ) ) |
| 16 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 17 |
|
eqid |
|- ( Edg ` H ) = ( Edg ` H ) |
| 18 |
1 16 17
|
clnbgrgrimlem |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ x e. ( Vtx ` H ) ) ) -> ( ( e e. ( Edg ` H ) /\ { ( F ` X ) , x } C_ e ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 19 |
11 12 15 18
|
syl3anc |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( ( e e. ( Edg ` H ) /\ { ( F ` X ) , x } C_ e ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 20 |
19
|
expd |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( e e. ( Edg ` H ) -> ( { ( F ` X ) , x } C_ e -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) ) |
| 21 |
20
|
rexlimdv |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 22 |
10 21
|
jaod |
|- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 23 |
22
|
expimpd |
|- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 24 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 25 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 26 |
1 16 24 25
|
grimprop |
|- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 27 |
|
f1of |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V --> ( Vtx ` H ) ) |
| 28 |
27
|
adantr |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> F : V --> ( Vtx ` H ) ) |
| 29 |
28
|
3ad2ant1 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> F : V --> ( Vtx ` H ) ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> F : V --> ( Vtx ` H ) ) |
| 31 |
1
|
clnbgrisvtx |
|- ( n e. ( G ClNeighbVtx X ) -> n e. V ) |
| 32 |
31
|
adantl |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) -> n e. V ) |
| 33 |
32
|
adantr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> n e. V ) |
| 34 |
30 33
|
ffvelcdmd |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( F ` n ) e. ( Vtx ` H ) ) |
| 35 |
|
eleq1 |
|- ( x = ( F ` n ) -> ( x e. ( Vtx ` H ) <-> ( F ` n ) e. ( Vtx ` H ) ) ) |
| 36 |
35
|
eqcoms |
|- ( ( F ` n ) = x -> ( x e. ( Vtx ` H ) <-> ( F ` n ) e. ( Vtx ` H ) ) ) |
| 37 |
36
|
adantl |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( x e. ( Vtx ` H ) <-> ( F ` n ) e. ( Vtx ` H ) ) ) |
| 38 |
34 37
|
mpbird |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> x e. ( Vtx ` H ) ) |
| 39 |
|
simp3 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> X e. V ) |
| 40 |
29 39
|
ffvelcdmd |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( F ` X ) e. ( Vtx ` H ) ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( F ` X ) e. ( Vtx ` H ) ) |
| 42 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 43 |
1 42
|
clnbgrel |
|- ( n e. ( G ClNeighbVtx X ) <-> ( ( n e. V /\ X e. V ) /\ ( n = X \/ E. k e. ( Edg ` G ) { X , n } C_ k ) ) ) |
| 44 |
|
fveq2 |
|- ( n = X -> ( F ` n ) = ( F ` X ) ) |
| 45 |
44
|
orcd |
|- ( n = X -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 46 |
45
|
2a1d |
|- ( n = X -> ( ( n e. V /\ X e. V ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 47 |
24
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( k e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) ) |
| 48 |
47
|
adantr |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( k e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) ) |
| 49 |
48
|
3ad2ant2 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( k e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) ) |
| 50 |
49
|
biimpa |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) -> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) |
| 51 |
|
2fveq3 |
|- ( i = j -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( ( iEdg ` H ) ` ( g ` j ) ) ) |
| 52 |
|
fveq2 |
|- ( i = j -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` j ) ) |
| 53 |
52
|
imaeq2d |
|- ( i = j -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 54 |
51 53
|
eqeq12d |
|- ( i = j -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) ) |
| 55 |
54
|
rspcv |
|- ( j e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) ) |
| 56 |
55
|
3ad2ant3 |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) ) |
| 57 |
|
sseq2 |
|- ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k <-> { X , n } C_ ( ( iEdg ` G ) ` j ) ) ) |
| 58 |
57
|
3ad2ant3 |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) /\ k = ( ( iEdg ` G ) ` j ) ) -> ( { X , n } C_ k <-> { X , n } C_ ( ( iEdg ` G ) ` j ) ) ) |
| 59 |
|
sseq2 |
|- ( e = ( ( iEdg ` H ) ` ( g ` j ) ) -> ( { ( F ` X ) , ( F ` n ) } C_ e <-> { ( F ` X ) , ( F ` n ) } C_ ( ( iEdg ` H ) ` ( g ` j ) ) ) ) |
| 60 |
25
|
uhgrfun |
|- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
| 61 |
60
|
adantl |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> Fun ( iEdg ` H ) ) |
| 62 |
61
|
3ad2ant3 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> Fun ( iEdg ` H ) ) |
| 63 |
|
f1of |
|- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 64 |
63
|
adantl |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> g : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 65 |
64
|
3ad2ant1 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> g : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 66 |
65
|
ffvelcdmda |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ j e. dom ( iEdg ` G ) ) -> ( g ` j ) e. dom ( iEdg ` H ) ) |
| 67 |
25
|
iedgedg |
|- ( ( Fun ( iEdg ` H ) /\ ( g ` j ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 68 |
62 66 67
|
syl2an2r |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ j e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 69 |
68
|
3adant2 |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 70 |
69
|
adantr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 71 |
70
|
3ad2ant1 |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 72 |
|
f1ofn |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> F Fn V ) |
| 73 |
72
|
adantr |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> F Fn V ) |
| 74 |
73
|
3ad2ant1 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> F Fn V ) |
| 75 |
74
|
3ad2ant1 |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> F Fn V ) |
| 76 |
75
|
adantr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) -> F Fn V ) |
| 77 |
|
pm3.22 |
|- ( ( n e. V /\ X e. V ) -> ( X e. V /\ n e. V ) ) |
| 78 |
76 77
|
anim12i |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ ( n e. V /\ X e. V ) ) -> ( F Fn V /\ ( X e. V /\ n e. V ) ) ) |
| 79 |
78
|
3adant2 |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F Fn V /\ ( X e. V /\ n e. V ) ) ) |
| 80 |
|
3anass |
|- ( ( F Fn V /\ X e. V /\ n e. V ) <-> ( F Fn V /\ ( X e. V /\ n e. V ) ) ) |
| 81 |
79 80
|
sylibr |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F Fn V /\ X e. V /\ n e. V ) ) |
| 82 |
|
fnimapr |
|- ( ( F Fn V /\ X e. V /\ n e. V ) -> ( F " { X , n } ) = { ( F ` X ) , ( F ` n ) } ) |
| 83 |
81 82
|
syl |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F " { X , n } ) = { ( F ` X ) , ( F ` n ) } ) |
| 84 |
|
imass2 |
|- ( { X , n } C_ ( ( iEdg ` G ) ` j ) -> ( F " { X , n } ) C_ ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 85 |
84
|
3ad2ant2 |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F " { X , n } ) C_ ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 86 |
83 85
|
eqsstrrd |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> { ( F ` X ) , ( F ` n ) } C_ ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 87 |
|
simp1r |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 88 |
86 87
|
sseqtrrd |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> { ( F ` X ) , ( F ` n ) } C_ ( ( iEdg ` H ) ` ( g ` j ) ) ) |
| 89 |
59 71 88
|
rspcedvdw |
|- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) |
| 90 |
89
|
3exp |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) -> ( { X , n } C_ ( ( iEdg ` G ) ` j ) -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 91 |
90
|
3adant3 |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) /\ k = ( ( iEdg ` G ) ` j ) ) -> ( { X , n } C_ ( ( iEdg ` G ) ` j ) -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 92 |
58 91
|
sylbid |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) /\ k = ( ( iEdg ` G ) ` j ) ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 93 |
92
|
3exp |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) |
| 94 |
56 93
|
syld |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) |
| 95 |
94
|
3exp |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> ( X e. V -> ( j e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) |
| 96 |
95
|
com34 |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> ( X e. V -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) |
| 97 |
96
|
3exp |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( k e. ( Edg ` G ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 98 |
97
|
com25 |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 99 |
98
|
expimpd |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 100 |
99
|
exlimdv |
|- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 101 |
100
|
imp |
|- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) |
| 102 |
101
|
3imp |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) |
| 103 |
102
|
imp31 |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) /\ j e. dom ( iEdg ` G ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 104 |
103
|
rexlimdva |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 105 |
50 104
|
mpd |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 106 |
105
|
ex |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( k e. ( Edg ` G ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 107 |
106
|
com14 |
|- ( ( n e. V /\ X e. V ) -> ( k e. ( Edg ` G ) -> ( { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 108 |
107
|
imp |
|- ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 109 |
108
|
3imp |
|- ( ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) /\ { X , n } C_ k /\ ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) |
| 110 |
109
|
olcd |
|- ( ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) /\ { X , n } C_ k /\ ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 111 |
110
|
3exp |
|- ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 112 |
111
|
rexlimdva |
|- ( ( n e. V /\ X e. V ) -> ( E. k e. ( Edg ` G ) { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 113 |
112
|
com12 |
|- ( E. k e. ( Edg ` G ) { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 114 |
46 113
|
jaoi |
|- ( ( n = X \/ E. k e. ( Edg ` G ) { X , n } C_ k ) -> ( ( n e. V /\ X e. V ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 115 |
114
|
impcom |
|- ( ( ( n e. V /\ X e. V ) /\ ( n = X \/ E. k e. ( Edg ` G ) { X , n } C_ k ) ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 116 |
43 115
|
sylbi |
|- ( n e. ( G ClNeighbVtx X ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 117 |
116
|
impcom |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 119 |
|
eqeq1 |
|- ( x = ( F ` n ) -> ( x = ( F ` X ) <-> ( F ` n ) = ( F ` X ) ) ) |
| 120 |
|
preq2 |
|- ( x = ( F ` n ) -> { ( F ` X ) , x } = { ( F ` X ) , ( F ` n ) } ) |
| 121 |
120
|
sseq1d |
|- ( x = ( F ` n ) -> ( { ( F ` X ) , x } C_ e <-> { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 122 |
121
|
rexbidv |
|- ( x = ( F ` n ) -> ( E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e <-> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 123 |
119 122
|
orbi12d |
|- ( x = ( F ` n ) -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) <-> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 124 |
123
|
eqcoms |
|- ( ( F ` n ) = x -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) <-> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 125 |
124
|
adantl |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) <-> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 126 |
118 125
|
mpbird |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) |
| 127 |
38 41 126
|
jca31 |
|- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) |
| 128 |
127
|
ex |
|- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) -> ( ( F ` n ) = x -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 129 |
128
|
rexlimdva |
|- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 130 |
26 129
|
syl3an1 |
|- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 131 |
23 130
|
impbid |
|- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 132 |
131
|
3exp |
|- ( F e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) ) ) |
| 133 |
132
|
impcom |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) -> ( X e. V -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) ) |
| 134 |
133
|
imp |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 135 |
16 17
|
clnbgrel |
|- ( x e. ( H ClNeighbVtx ( F ` X ) ) <-> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) |
| 136 |
135
|
a1i |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( x e. ( H ClNeighbVtx ( F ` X ) ) <-> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 137 |
1 16
|
grimf1o |
|- ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> ( Vtx ` H ) ) |
| 138 |
137 72
|
syl |
|- ( F e. ( G GraphIso H ) -> F Fn V ) |
| 139 |
138
|
adantl |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) -> F Fn V ) |
| 140 |
1
|
clnbgrssvtx |
|- ( G ClNeighbVtx X ) C_ V |
| 141 |
140
|
a1i |
|- ( X e. V -> ( G ClNeighbVtx X ) C_ V ) |
| 142 |
|
fvelimab |
|- ( ( F Fn V /\ ( G ClNeighbVtx X ) C_ V ) -> ( x e. ( F " ( G ClNeighbVtx X ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 143 |
139 141 142
|
syl2an |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( x e. ( F " ( G ClNeighbVtx X ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 144 |
134 136 143
|
3bitr4d |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( x e. ( H ClNeighbVtx ( F ` X ) ) <-> x e. ( F " ( G ClNeighbVtx X ) ) ) ) |
| 145 |
144
|
eqrdv |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( H ClNeighbVtx ( F ` X ) ) = ( F " ( G ClNeighbVtx X ) ) ) |