Description: Every vertex K is a member of its closed neighborhood. (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | clnbgrvtxel | ⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | id | ⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ 𝑉 ) | |
| 3 | eqidd | ⊢ ( 𝐾 ∈ 𝑉 → 𝐾 = 𝐾 ) | |
| 4 | 3 | orcd | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝐾 } ⊆ 𝑒 ) ) |
| 5 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 6 | 1 5 | clnbgrel | ⊢ ( 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( ( 𝐾 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝐾 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝐾 } ⊆ 𝑒 ) ) ) |
| 7 | 2 2 4 6 | syl21anbrc | ⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) |