Metamath Proof Explorer


Theorem cycldlenngric

Description: Two simple pseudographs are not isomorphic if one has a cycle and the other has no cycle of the same length. (Contributed by AV, 6-Nov-2025)

Ref Expression
Assertion cycldlenngric G USHGraph H USHGraph p f f Cycles G p f = N ¬ p f f Cycles H p f = N ¬ G 𝑔𝑟 H

Proof

Step Hyp Ref Expression
1 brgric G 𝑔𝑟 H G GraphIso H
2 n0rex G GraphIso H i G GraphIso H i G GraphIso H
3 eqid iEdg G = iEdg G
4 eqid iEdg H = iEdg H
5 simprll i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N G USHGraph
6 simprlr i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N H USHGraph
7 simpl i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N i G GraphIso H
8 2fveq3 x = j iEdg G f x = iEdg G f j
9 8 imaeq2d x = j i iEdg G f x = i iEdg G f j
10 9 fveq2d x = j iEdg H -1 i iEdg G f x = iEdg H -1 i iEdg G f j
11 10 cbvmptv x dom f iEdg H -1 i iEdg G f x = j dom f iEdg H -1 i iEdg G f j
12 cycliswlk f Cycles G p f Walks G p
13 12 ad2antrl G USHGraph H USHGraph f Cycles G p f = N f Walks G p
14 13 adantl i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N f Walks G p
15 3 4 5 6 7 11 14 upgrimwlklen i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N x dom f iEdg H -1 i iEdg G f x Walks H i p x dom f iEdg H -1 i iEdg G f x = f
16 simprrl i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N f Cycles G p
17 3 4 5 6 7 11 16 upgrimcycls i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N x dom f iEdg H -1 i iEdg G f x Cycles H i p
18 simp3 i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N x dom f iEdg H -1 i iEdg G f x Walks H i p x dom f iEdg H -1 i iEdg G f x = f x dom f iEdg H -1 i iEdg G f x Cycles H i p x dom f iEdg H -1 i iEdg G f x Cycles H i p
19 simp2r i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N x dom f iEdg H -1 i iEdg G f x Walks H i p x dom f iEdg H -1 i iEdg G f x = f x dom f iEdg H -1 i iEdg G f x Cycles H i p x dom f iEdg H -1 i iEdg G f x = f
20 simprrr i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N f = N
21 20 3ad2ant1 i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N x dom f iEdg H -1 i iEdg G f x Walks H i p x dom f iEdg H -1 i iEdg G f x = f x dom f iEdg H -1 i iEdg G f x Cycles H i p f = N
22 19 21 eqtrd i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N x dom f iEdg H -1 i iEdg G f x Walks H i p x dom f iEdg H -1 i iEdg G f x = f x dom f iEdg H -1 i iEdg G f x Cycles H i p x dom f iEdg H -1 i iEdg G f x = N
23 vex i V
24 vex p V
25 23 24 coex i p V
26 vex f V
27 26 dmex dom f V
28 27 mptex x dom f iEdg H -1 i iEdg G f x V
29 breq12 g = x dom f iEdg H -1 i iEdg G f x q = i p g Cycles H q x dom f iEdg H -1 i iEdg G f x Cycles H i p
30 29 ancoms q = i p g = x dom f iEdg H -1 i iEdg G f x g Cycles H q x dom f iEdg H -1 i iEdg G f x Cycles H i p
31 fveqeq2 g = x dom f iEdg H -1 i iEdg G f x g = N x dom f iEdg H -1 i iEdg G f x = N
32 31 adantl q = i p g = x dom f iEdg H -1 i iEdg G f x g = N x dom f iEdg H -1 i iEdg G f x = N
33 30 32 anbi12d q = i p g = x dom f iEdg H -1 i iEdg G f x g Cycles H q g = N x dom f iEdg H -1 i iEdg G f x Cycles H i p x dom f iEdg H -1 i iEdg G f x = N
34 25 28 33 spc2ev x dom f iEdg H -1 i iEdg G f x Cycles H i p x dom f iEdg H -1 i iEdg G f x = N q g g Cycles H q g = N
35 18 22 34 syl2anc i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N x dom f iEdg H -1 i iEdg G f x Walks H i p x dom f iEdg H -1 i iEdg G f x = f x dom f iEdg H -1 i iEdg G f x Cycles H i p q g g Cycles H q g = N
36 15 17 35 mpd3an23 i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N q g g Cycles H q g = N
37 36 ex i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N q g g Cycles H q g = N
38 37 rexlimivw i G GraphIso H i G GraphIso H G USHGraph H USHGraph f Cycles G p f = N q g g Cycles H q g = N
39 2 38 syl G GraphIso H G USHGraph H USHGraph f Cycles G p f = N q g g Cycles H q g = N
40 1 39 sylbi G 𝑔𝑟 H G USHGraph H USHGraph f Cycles G p f = N q g g Cycles H q g = N
41 40 expdcom G USHGraph H USHGraph f Cycles G p f = N G 𝑔𝑟 H q g g Cycles H q g = N
42 41 exlimdvv G USHGraph H USHGraph p f f Cycles G p f = N G 𝑔𝑟 H q g g Cycles H q g = N
43 42 imp G USHGraph H USHGraph p f f Cycles G p f = N G 𝑔𝑟 H q g g Cycles H q g = N
44 breq12 f = g p = q f Cycles H p g Cycles H q
45 44 ancoms p = q f = g f Cycles H p g Cycles H q
46 fveqeq2 f = g f = N g = N
47 46 adantl p = q f = g f = N g = N
48 45 47 anbi12d p = q f = g f Cycles H p f = N g Cycles H q g = N
49 48 cbvex2vw p f f Cycles H p f = N q g g Cycles H q g = N
50 43 49 imbitrrdi G USHGraph H USHGraph p f f Cycles G p f = N G 𝑔𝑟 H p f f Cycles H p f = N
51 50 con3d G USHGraph H USHGraph p f f Cycles G p f = N ¬ p f f Cycles H p f = N ¬ G 𝑔𝑟 H
52 51 expimpd G USHGraph H USHGraph p f f Cycles G p f = N ¬ p f f Cycles H p f = N ¬ G 𝑔𝑟 H