| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|
| 2 |
|
upgrimwlk.j |
|
| 3 |
|
upgrimwlk.g |
|
| 4 |
|
upgrimwlk.h |
|
| 5 |
|
upgrimwlk.n |
|
| 6 |
|
upgrimwlk.e |
|
| 7 |
|
upgrimcycls.c |
|
| 8 |
|
cyclispth |
|
| 9 |
7 8
|
syl |
|
| 10 |
1 2 3 4 5 6 9
|
upgrimpths |
|
| 11 |
|
iscycl |
|
| 12 |
11
|
simprbi |
|
| 13 |
7 12
|
syl |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
cycliswlk |
|
| 16 |
|
eqid |
|
| 17 |
16
|
wlkp |
|
| 18 |
7 15 17
|
3syl |
|
| 19 |
|
wlkcl |
|
| 20 |
7 15 19
|
3syl |
|
| 21 |
|
0elfz |
|
| 22 |
20 21
|
syl |
|
| 23 |
18 22
|
fvco3d |
|
| 24 |
1
|
wlkf |
|
| 25 |
7 15 24
|
3syl |
|
| 26 |
1 2 3 4 5 6 25
|
upgrimwlklem1 |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
nn0fz0 |
|
| 29 |
20 28
|
sylib |
|
| 30 |
18 29
|
fvco3d |
|
| 31 |
27 30
|
eqtrd |
|
| 32 |
14 23 31
|
3eqtr4d |
|
| 33 |
|
iscycl |
|
| 34 |
10 32 33
|
sylanbrc |
|