| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
upgrimwlk.j |
|- J = ( iEdg ` H ) |
| 3 |
|
upgrimwlk.g |
|- ( ph -> G e. USPGraph ) |
| 4 |
|
upgrimwlk.h |
|- ( ph -> H e. USPGraph ) |
| 5 |
|
upgrimwlk.n |
|- ( ph -> N e. ( G GraphIso H ) ) |
| 6 |
|
upgrimwlk.e |
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
| 7 |
|
upgrimcycls.c |
|- ( ph -> F ( Cycles ` G ) P ) |
| 8 |
|
cyclispth |
|- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
| 9 |
7 8
|
syl |
|- ( ph -> F ( Paths ` G ) P ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimpths |
|- ( ph -> E ( Paths ` H ) ( N o. P ) ) |
| 11 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 12 |
11
|
simprbi |
|- ( F ( Cycles ` G ) P -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 13 |
7 12
|
syl |
|- ( ph -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 14 |
13
|
fveq2d |
|- ( ph -> ( N ` ( P ` 0 ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 15 |
|
cycliswlk |
|- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
| 16 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 17 |
16
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 18 |
7 15 17
|
3syl |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 19 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 20 |
7 15 19
|
3syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
| 21 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 23 |
18 22
|
fvco3d |
|- ( ph -> ( ( N o. P ) ` 0 ) = ( N ` ( P ` 0 ) ) ) |
| 24 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 25 |
7 15 24
|
3syl |
|- ( ph -> F e. Word dom I ) |
| 26 |
1 2 3 4 5 6 25
|
upgrimwlklem1 |
|- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 27 |
26
|
fveq2d |
|- ( ph -> ( ( N o. P ) ` ( # ` E ) ) = ( ( N o. P ) ` ( # ` F ) ) ) |
| 28 |
|
nn0fz0 |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 29 |
20 28
|
sylib |
|- ( ph -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 30 |
18 29
|
fvco3d |
|- ( ph -> ( ( N o. P ) ` ( # ` F ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 31 |
27 30
|
eqtrd |
|- ( ph -> ( ( N o. P ) ` ( # ` E ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 32 |
14 23 31
|
3eqtr4d |
|- ( ph -> ( ( N o. P ) ` 0 ) = ( ( N o. P ) ` ( # ` E ) ) ) |
| 33 |
|
iscycl |
|- ( E ( Cycles ` H ) ( N o. P ) <-> ( E ( Paths ` H ) ( N o. P ) /\ ( ( N o. P ) ` 0 ) = ( ( N o. P ) ` ( # ` E ) ) ) ) |
| 34 |
10 32 33
|
sylanbrc |
|- ( ph -> E ( Cycles ` H ) ( N o. P ) ) |