| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
upgrimwlk.j |
|- J = ( iEdg ` H ) |
| 3 |
|
upgrimwlk.g |
|- ( ph -> G e. USPGraph ) |
| 4 |
|
upgrimwlk.h |
|- ( ph -> H e. USPGraph ) |
| 5 |
|
upgrimwlk.n |
|- ( ph -> N e. ( G GraphIso H ) ) |
| 6 |
|
upgrimwlk.e |
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
| 7 |
|
upgrimpths.p |
|- ( ph -> F ( Paths ` G ) P ) |
| 8 |
|
pthistrl |
|- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
| 9 |
7 8
|
syl |
|- ( ph -> F ( Trails ` G ) P ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimtrls |
|- ( ph -> E ( Trails ` H ) ( N o. P ) ) |
| 11 |
1 2 3 4 5 6 7
|
upgrimpthslem1 |
|- ( ph -> Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |
| 12 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
| 13 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 14 |
7 12 13
|
3syl |
|- ( ph -> F e. Word dom I ) |
| 15 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 16 |
15
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 17 |
7 12 16
|
3syl |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 18 |
1 2 3 4 5 6 14 17
|
upgrimwlklem4 |
|- ( ph -> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) ) |
| 19 |
18
|
ffnd |
|- ( ph -> ( N o. P ) Fn ( 0 ... ( # ` E ) ) ) |
| 20 |
1 2 3 4 5 6 14
|
upgrimwlklem1 |
|- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 21 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 22 |
7 12 21
|
3syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
| 23 |
20 22
|
eqeltrd |
|- ( ph -> ( # ` E ) e. NN0 ) |
| 24 |
|
0elfz |
|- ( ( # ` E ) e. NN0 -> 0 e. ( 0 ... ( # ` E ) ) ) |
| 25 |
23 24
|
syl |
|- ( ph -> 0 e. ( 0 ... ( # ` E ) ) ) |
| 26 |
|
nn0fz0 |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 27 |
22 26
|
sylib |
|- ( ph -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 28 |
20
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` E ) ) = ( 0 ... ( # ` F ) ) ) |
| 29 |
27 28
|
eleqtrrd |
|- ( ph -> ( # ` F ) e. ( 0 ... ( # ` E ) ) ) |
| 30 |
|
fnimapr |
|- ( ( ( N o. P ) Fn ( 0 ... ( # ` E ) ) /\ 0 e. ( 0 ... ( # ` E ) ) /\ ( # ` F ) e. ( 0 ... ( # ` E ) ) ) -> ( ( N o. P ) " { 0 , ( # ` F ) } ) = { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } ) |
| 31 |
19 25 29 30
|
syl3anc |
|- ( ph -> ( ( N o. P ) " { 0 , ( # ` F ) } ) = { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } ) |
| 32 |
31
|
eleq2d |
|- ( ph -> ( x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) <-> x e. { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } ) ) |
| 33 |
|
vex |
|- x e. _V |
| 34 |
33
|
elpr |
|- ( x e. { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } <-> ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 35 |
32 34
|
bitrdi |
|- ( ph -> ( x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) <-> ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) ) |
| 36 |
1 2 3 4 5 6 7
|
upgrimpthslem2 |
|- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) /\ -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 37 |
36
|
simpld |
|- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) ) |
| 38 |
|
eqeq2 |
|- ( x = ( ( N o. P ) ` 0 ) -> ( ( ( N o. P ) ` y ) = x <-> ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) ) ) |
| 39 |
38
|
notbid |
|- ( x = ( ( N o. P ) ` 0 ) -> ( -. ( ( N o. P ) ` y ) = x <-> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) ) ) |
| 40 |
37 39
|
syl5ibrcom |
|- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( x = ( ( N o. P ) ` 0 ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 41 |
36
|
simprd |
|- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) |
| 42 |
|
eqeq2 |
|- ( x = ( ( N o. P ) ` ( # ` F ) ) -> ( ( ( N o. P ) ` y ) = x <-> ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 43 |
42
|
notbid |
|- ( x = ( ( N o. P ) ` ( # ` F ) ) -> ( -. ( ( N o. P ) ` y ) = x <-> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 44 |
41 43
|
syl5ibrcom |
|- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( x = ( ( N o. P ) ` ( # ` F ) ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 45 |
40 44
|
jaod |
|- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 46 |
45
|
impancom |
|- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( y e. ( 1 ..^ ( # ` F ) ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 47 |
46
|
imp |
|- ( ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) /\ y e. ( 1 ..^ ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = x ) |
| 48 |
47
|
nrexdv |
|- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> -. E. y e. ( 1 ..^ ( # ` F ) ) ( ( N o. P ) ` y ) = x ) |
| 49 |
20
|
eqcomd |
|- ( ph -> ( # ` F ) = ( # ` E ) ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` F ) ) = ( 0 ... ( # ` E ) ) ) |
| 51 |
50
|
feq2d |
|- ( ph -> ( ( N o. P ) : ( 0 ... ( # ` F ) ) --> ( Vtx ` H ) <-> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) ) ) |
| 52 |
18 51
|
mpbird |
|- ( ph -> ( N o. P ) : ( 0 ... ( # ` F ) ) --> ( Vtx ` H ) ) |
| 53 |
52
|
ffnd |
|- ( ph -> ( N o. P ) Fn ( 0 ... ( # ` F ) ) ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( N o. P ) Fn ( 0 ... ( # ` F ) ) ) |
| 55 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
| 56 |
|
fzossfz |
|- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 57 |
55 56
|
sstri |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 58 |
57
|
a1i |
|- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 59 |
54 58
|
fvelimabd |
|- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) <-> E. y e. ( 1 ..^ ( # ` F ) ) ( ( N o. P ) ` y ) = x ) ) |
| 60 |
48 59
|
mtbird |
|- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
| 61 |
60
|
ex |
|- ( ph -> ( ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) -> -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 62 |
35 61
|
sylbid |
|- ( ph -> ( x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) -> -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 63 |
62
|
ralrimiv |
|- ( ph -> A. x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
| 64 |
|
disj |
|- ( ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> A. x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
| 65 |
63 64
|
sylibr |
|- ( ph -> ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
| 66 |
20
|
oveq2d |
|- ( ph -> ( 1 ..^ ( # ` E ) ) = ( 1 ..^ ( # ` F ) ) ) |
| 67 |
66
|
reseq2d |
|- ( ph -> ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) = ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |
| 68 |
67
|
cnveqd |
|- ( ph -> `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) = `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |
| 69 |
68
|
funeqd |
|- ( ph -> ( Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) <-> Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) ) |
| 70 |
|
preq2 |
|- ( ( # ` E ) = ( # ` F ) -> { 0 , ( # ` E ) } = { 0 , ( # ` F ) } ) |
| 71 |
70
|
imaeq2d |
|- ( ( # ` E ) = ( # ` F ) -> ( ( N o. P ) " { 0 , ( # ` E ) } ) = ( ( N o. P ) " { 0 , ( # ` F ) } ) ) |
| 72 |
|
oveq2 |
|- ( ( # ` E ) = ( # ` F ) -> ( 1 ..^ ( # ` E ) ) = ( 1 ..^ ( # ` F ) ) ) |
| 73 |
72
|
imaeq2d |
|- ( ( # ` E ) = ( # ` F ) -> ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) = ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
| 74 |
71 73
|
ineq12d |
|- ( ( # ` E ) = ( # ` F ) -> ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 75 |
74
|
eqeq1d |
|- ( ( # ` E ) = ( # ` F ) -> ( ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) <-> ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
| 76 |
20 75
|
syl |
|- ( ph -> ( ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) <-> ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
| 77 |
69 76
|
3anbi23d |
|- ( ph -> ( ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) ) <-> ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
| 78 |
10 11 65 77
|
mpbir3and |
|- ( ph -> ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) ) ) |
| 79 |
|
ispth |
|- ( E ( Paths ` H ) ( N o. P ) <-> ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) ) ) |
| 80 |
78 79
|
sylibr |
|- ( ph -> E ( Paths ` H ) ( N o. P ) ) |