| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimpths.p |
⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 8 |
|
pthistrl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimtrls |
⊢ ( 𝜑 → 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| 11 |
1 2 3 4 5 6 7
|
upgrimpthslem1 |
⊢ ( 𝜑 → Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 12 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 13 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 14 |
7 12 13
|
3syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 15 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 16 |
15
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 17 |
7 12 16
|
3syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 18 |
1 2 3 4 5 6 14 17
|
upgrimwlklem4 |
⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) |
| 19 |
18
|
ffnd |
⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 20 |
1 2 3 4 5 6 14
|
upgrimwlklem1 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 21 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 22 |
7 12 21
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 23 |
20 22
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
| 24 |
|
0elfz |
⊢ ( ( ♯ ‘ 𝐸 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 26 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 27 |
22 26
|
sylib |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 28 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐸 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 29 |
27 28
|
eleqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 30 |
|
fnimapr |
⊢ ( ( ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐸 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 31 |
19 25 29 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 32 |
31
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ↔ 𝑥 ∈ { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 33 |
|
vex |
⊢ 𝑥 ∈ V |
| 34 |
33
|
elpr |
⊢ ( 𝑥 ∈ { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ↔ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 35 |
32 34
|
bitrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ↔ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 36 |
1 2 3 4 5 6 7
|
upgrimpthslem2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 37 |
36
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) |
| 38 |
|
eqeq2 |
⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) ) |
| 39 |
38
|
notbid |
⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) ) |
| 40 |
37 39
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 41 |
36
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 42 |
|
eqeq2 |
⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 43 |
42
|
notbid |
⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 44 |
41 43
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 45 |
40 44
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 46 |
45
|
impancom |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 47 |
46
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) |
| 48 |
47
|
nrexdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ¬ ∃ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) |
| 49 |
20
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐸 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 51 |
50
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐻 ) ↔ ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) ) |
| 52 |
18 51
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) |
| 53 |
52
|
ffnd |
⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 55 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 56 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 57 |
55 56
|
sstri |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 58 |
57
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 59 |
54 58
|
fvelimabd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ∃ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 60 |
48 59
|
mtbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 61 |
60
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 62 |
35 61
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) → ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 63 |
62
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 64 |
|
disj |
⊢ ( ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ∀ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 65 |
63 64
|
sylibr |
⊢ ( 𝜑 → ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
| 66 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 1 ..^ ( ♯ ‘ 𝐸 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 67 |
66
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 68 |
67
|
cnveqd |
⊢ ( 𝜑 → ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) = ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 69 |
68
|
funeqd |
⊢ ( 𝜑 → ( Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ↔ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 70 |
|
preq2 |
⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → { 0 , ( ♯ ‘ 𝐸 ) } = { 0 , ( ♯ ‘ 𝐹 ) } ) |
| 71 |
70
|
imaeq2d |
⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) = ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) |
| 72 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( 1 ..^ ( ♯ ‘ 𝐸 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 73 |
72
|
imaeq2d |
⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 74 |
71 73
|
ineq12d |
⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 75 |
74
|
eqeq1d |
⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ↔ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 76 |
20 75
|
syl |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ↔ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 77 |
69 76
|
3anbi23d |
⊢ ( 𝜑 → ( ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ) ↔ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
| 78 |
10 11 65 77
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ) ) |
| 79 |
|
ispth |
⊢ ( 𝐸 ( Paths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ) ) |
| 80 |
78 79
|
sylibr |
⊢ ( 𝜑 → 𝐸 ( Paths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |