| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimpths.p |
⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 8 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 9 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 10 |
8 9
|
grimf1o |
⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 11 |
|
f1of1 |
⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 12 |
5 10 11
|
3syl |
⊢ ( 𝜑 → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 14 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 15 |
8
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 17 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 18 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 19 |
17 18
|
sstri |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 20 |
19
|
sseli |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 22 |
16 21
|
ffvelcdmd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 23 |
22
|
ex |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 24 |
7 14 23
|
3syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 26 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 27 |
|
0elfz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 29 |
15 28
|
ffvelcdmd |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 30 |
7 14 29
|
3syl |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 32 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 34 |
7 14 26
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 35 |
34 27
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 37 |
|
elfzole1 |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 1 ≤ 𝑋 ) |
| 38 |
|
elfzoelz |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ∈ ℤ ) |
| 39 |
|
zgt0ge1 |
⊢ ( 𝑋 ∈ ℤ → ( 0 < 𝑋 ↔ 1 ≤ 𝑋 ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 < 𝑋 ↔ 1 ≤ 𝑋 ) ) |
| 41 |
|
simpr |
⊢ ( ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 < 𝑋 ) → 0 < 𝑋 ) |
| 42 |
41
|
gt0ne0d |
⊢ ( ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 < 𝑋 ) → 𝑋 ≠ 0 ) |
| 43 |
42
|
ex |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 < 𝑋 → 𝑋 ≠ 0 ) ) |
| 44 |
40 43
|
sylbird |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 1 ≤ 𝑋 → 𝑋 ≠ 0 ) ) |
| 45 |
37 44
|
mpd |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ≠ 0 ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ≠ 0 ) |
| 47 |
|
pthdivtx |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑋 ≠ 0 ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 48 |
32 33 36 46 47
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 49 |
|
dff14i |
⊢ ( ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ 0 ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) |
| 50 |
13 25 31 48 49
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) |
| 51 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 52 |
26 51
|
sylib |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 53 |
15 52
|
ffvelcdmd |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 54 |
7 14 53
|
3syl |
⊢ ( 𝜑 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 56 |
34 51
|
sylib |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 58 |
38
|
zred |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ∈ ℝ ) |
| 59 |
|
elfzolt2 |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 < ( ♯ ‘ 𝐹 ) ) |
| 60 |
58 59
|
ltned |
⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ≠ ( ♯ ‘ 𝐹 ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ≠ ( ♯ ‘ 𝐹 ) ) |
| 62 |
|
pthdivtx |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑋 ≠ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 63 |
32 33 57 61 62
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 64 |
|
dff14i |
⊢ ( ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 65 |
13 25 55 63 64
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 66 |
7 14 15
|
3syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 68 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 69 |
67 68
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ) |
| 70 |
67 36
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) = ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) |
| 71 |
69 70
|
neeq12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ↔ ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) ) |
| 72 |
67 57
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 73 |
69 72
|
neeq12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 74 |
71 73
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ∧ ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 75 |
50 65 74
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 76 |
|
df-ne |
⊢ ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) |
| 77 |
|
df-ne |
⊢ ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 78 |
76 77
|
anbi12i |
⊢ ( ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 79 |
75 78
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |