| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
upgrimwlk.j |
|- J = ( iEdg ` H ) |
| 3 |
|
upgrimwlk.g |
|- ( ph -> G e. USPGraph ) |
| 4 |
|
upgrimwlk.h |
|- ( ph -> H e. USPGraph ) |
| 5 |
|
upgrimwlk.n |
|- ( ph -> N e. ( G GraphIso H ) ) |
| 6 |
|
upgrimwlk.e |
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
| 7 |
|
upgrimpths.p |
|- ( ph -> F ( Paths ` G ) P ) |
| 8 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 9 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 10 |
8 9
|
grimf1o |
|- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 11 |
|
f1of1 |
|- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 12 |
5 10 11
|
3syl |
|- ( ph -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 14 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
| 15 |
8
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 16 |
15
|
adantr |
|- ( ( F ( Walks ` G ) P /\ X e. ( 1 ..^ ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 17 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
| 18 |
|
fzossfz |
|- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 19 |
17 18
|
sstri |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 20 |
19
|
sseli |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> X e. ( 0 ... ( # ` F ) ) ) |
| 21 |
20
|
adantl |
|- ( ( F ( Walks ` G ) P /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X e. ( 0 ... ( # ` F ) ) ) |
| 22 |
16 21
|
ffvelcdmd |
|- ( ( F ( Walks ` G ) P /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) e. ( Vtx ` G ) ) |
| 23 |
22
|
ex |
|- ( F ( Walks ` G ) P -> ( X e. ( 1 ..^ ( # ` F ) ) -> ( P ` X ) e. ( Vtx ` G ) ) ) |
| 24 |
7 14 23
|
3syl |
|- ( ph -> ( X e. ( 1 ..^ ( # ` F ) ) -> ( P ` X ) e. ( Vtx ` G ) ) ) |
| 25 |
24
|
imp |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) e. ( Vtx ` G ) ) |
| 26 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 27 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 28 |
26 27
|
syl |
|- ( F ( Walks ` G ) P -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 29 |
15 28
|
ffvelcdmd |
|- ( F ( Walks ` G ) P -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 30 |
7 14 29
|
3syl |
|- ( ph -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 32 |
7
|
adantr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> F ( Paths ` G ) P ) |
| 33 |
|
simpr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X e. ( 1 ..^ ( # ` F ) ) ) |
| 34 |
7 14 26
|
3syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
| 35 |
34 27
|
syl |
|- ( ph -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 37 |
|
elfzole1 |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> 1 <_ X ) |
| 38 |
|
elfzoelz |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> X e. ZZ ) |
| 39 |
|
zgt0ge1 |
|- ( X e. ZZ -> ( 0 < X <-> 1 <_ X ) ) |
| 40 |
38 39
|
syl |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> ( 0 < X <-> 1 <_ X ) ) |
| 41 |
|
simpr |
|- ( ( X e. ( 1 ..^ ( # ` F ) ) /\ 0 < X ) -> 0 < X ) |
| 42 |
41
|
gt0ne0d |
|- ( ( X e. ( 1 ..^ ( # ` F ) ) /\ 0 < X ) -> X =/= 0 ) |
| 43 |
42
|
ex |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> ( 0 < X -> X =/= 0 ) ) |
| 44 |
40 43
|
sylbird |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> ( 1 <_ X -> X =/= 0 ) ) |
| 45 |
37 44
|
mpd |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> X =/= 0 ) |
| 46 |
45
|
adantl |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X =/= 0 ) |
| 47 |
|
pthdivtx |
|- ( ( F ( Paths ` G ) P /\ ( X e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ X =/= 0 ) ) -> ( P ` X ) =/= ( P ` 0 ) ) |
| 48 |
32 33 36 46 47
|
syl13anc |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) =/= ( P ` 0 ) ) |
| 49 |
|
dff14i |
|- ( ( N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ ( ( P ` X ) e. ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` X ) =/= ( P ` 0 ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) ) |
| 50 |
13 25 31 48 49
|
syl13anc |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) ) |
| 51 |
|
nn0fz0 |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 52 |
26 51
|
sylib |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 53 |
15 52
|
ffvelcdmd |
|- ( F ( Walks ` G ) P -> ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) |
| 54 |
7 14 53
|
3syl |
|- ( ph -> ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) |
| 56 |
34 51
|
sylib |
|- ( ph -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 58 |
38
|
zred |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> X e. RR ) |
| 59 |
|
elfzolt2 |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> X < ( # ` F ) ) |
| 60 |
58 59
|
ltned |
|- ( X e. ( 1 ..^ ( # ` F ) ) -> X =/= ( # ` F ) ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X =/= ( # ` F ) ) |
| 62 |
|
pthdivtx |
|- ( ( F ( Paths ` G ) P /\ ( X e. ( 1 ..^ ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ X =/= ( # ` F ) ) ) -> ( P ` X ) =/= ( P ` ( # ` F ) ) ) |
| 63 |
32 33 57 61 62
|
syl13anc |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) =/= ( P ` ( # ` F ) ) ) |
| 64 |
|
dff14i |
|- ( ( N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ ( ( P ` X ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) /\ ( P ` X ) =/= ( P ` ( # ` F ) ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) |
| 65 |
13 25 55 63 64
|
syl13anc |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) |
| 66 |
7 14 15
|
3syl |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 68 |
20
|
adantl |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X e. ( 0 ... ( # ` F ) ) ) |
| 69 |
67 68
|
fvco3d |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` X ) = ( N ` ( P ` X ) ) ) |
| 70 |
67 36
|
fvco3d |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` 0 ) = ( N ` ( P ` 0 ) ) ) |
| 71 |
69 70
|
neeq12d |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) <-> ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) ) ) |
| 72 |
67 57
|
fvco3d |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` ( # ` F ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 73 |
69 72
|
neeq12d |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) <-> ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) ) |
| 74 |
71 73
|
anbi12d |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) /\ ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) ) <-> ( ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) /\ ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) ) ) |
| 75 |
50 65 74
|
mpbir2and |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) /\ ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 76 |
|
df-ne |
|- ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) <-> -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` 0 ) ) |
| 77 |
|
df-ne |
|- ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) <-> -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` ( # ` F ) ) ) |
| 78 |
76 77
|
anbi12i |
|- ( ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) /\ ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) ) <-> ( -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` 0 ) /\ -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 79 |
75 78
|
sylib |
|- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` 0 ) /\ -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |