Metamath Proof Explorer


Theorem upgrimspths

Description: Graph isomorphisms between simple pseudographs map simple paths onto simple paths. (Contributed by AV, 31-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
upgrimspths.s ( 𝜑𝐹 ( SPaths ‘ 𝐺 ) 𝑃 )
Assertion upgrimspths ( 𝜑𝐸 ( SPaths ‘ 𝐻 ) ( 𝑁𝑃 ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
2 upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
3 upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
4 upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
5 upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
6 upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
7 upgrimspths.s ( 𝜑𝐹 ( SPaths ‘ 𝐺 ) 𝑃 )
8 spthispth ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃𝐹 ( Paths ‘ 𝐺 ) 𝑃 )
9 pthistrl ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 )
10 7 8 9 3syl ( 𝜑𝐹 ( Trails ‘ 𝐺 ) 𝑃 )
11 1 2 3 4 5 6 10 upgrimtrls ( 𝜑𝐸 ( Trails ‘ 𝐻 ) ( 𝑁𝑃 ) )
12 isspth ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun 𝑃 ) )
13 12 simprbi ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → Fun 𝑃 )
14 7 13 syl ( 𝜑 → Fun 𝑃 )
15 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
16 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
17 15 16 grimf1o ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) )
18 dff1o3 ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( 𝑁 : ( Vtx ‘ 𝐺 ) –onto→ ( Vtx ‘ 𝐻 ) ∧ Fun 𝑁 ) )
19 18 simprbi ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → Fun 𝑁 )
20 5 17 19 3syl ( 𝜑 → Fun 𝑁 )
21 funco ( ( Fun 𝑃 ∧ Fun 𝑁 ) → Fun ( 𝑃 𝑁 ) )
22 14 20 21 syl2anc ( 𝜑 → Fun ( 𝑃 𝑁 ) )
23 cnvco ( 𝑁𝑃 ) = ( 𝑃 𝑁 )
24 23 funeqi ( Fun ( 𝑁𝑃 ) ↔ Fun ( 𝑃 𝑁 ) )
25 22 24 sylibr ( 𝜑 → Fun ( 𝑁𝑃 ) )
26 isspth ( 𝐸 ( SPaths ‘ 𝐻 ) ( 𝑁𝑃 ) ↔ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁𝑃 ) ∧ Fun ( 𝑁𝑃 ) ) )
27 11 25 26 sylanbrc ( 𝜑𝐸 ( SPaths ‘ 𝐻 ) ( 𝑁𝑃 ) )