| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 2 |  | funres11 | ⊢ ( Fun  ◡ 𝑃  →  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 4 |  | imain | ⊢ ( Fun  ◡ 𝑃  →  ( 𝑃  “  ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 5 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 6 | 5 | oveq1i | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  =  ( ( 0  +  1 ) ..^ ( ♯ ‘ 𝐹 ) ) | 
						
							| 7 | 6 | ineq2i | ⊢ ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  =  ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( ( 0  +  1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 8 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 9 |  | prinfzo0 | ⊢ ( 0  ∈  ℤ  →  ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( ( 0  +  1 ) ..^ ( ♯ ‘ 𝐹 ) ) )  =  ∅ ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( ( 0  +  1 ) ..^ ( ♯ ‘ 𝐹 ) ) )  =  ∅ | 
						
							| 11 | 7 10 | eqtri | ⊢ ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  =  ∅ | 
						
							| 12 | 11 | imaeq2i | ⊢ ( 𝑃  “  ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ( 𝑃  “  ∅ ) | 
						
							| 13 |  | ima0 | ⊢ ( 𝑃  “  ∅ )  =  ∅ | 
						
							| 14 | 12 13 | eqtri | ⊢ ( 𝑃  “  ( { 0 ,  ( ♯ ‘ 𝐹 ) }  ∩  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ | 
						
							| 15 | 4 14 | eqtr3di | ⊢ ( Fun  ◡ 𝑃  →  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) | 
						
							| 17 | 1 3 16 | 3jca | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) | 
						
							| 18 |  | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) | 
						
							| 19 |  | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) | 
						
							| 20 | 17 18 19 | 3imtr4i | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  →  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |