| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz3 |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) |
| 2 |
|
fznuz |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑀 ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑀 ∈ ℤ → ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 4 |
3
|
3mix1d |
⊢ ( 𝑀 ∈ ℤ → ( ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁 ) ) |
| 5 |
|
3ianor |
⊢ ( ¬ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ↔ ( ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁 ) ) |
| 6 |
|
elfzo2 |
⊢ ( 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ↔ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) |
| 7 |
5 6
|
xchnxbir |
⊢ ( ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ↔ ( ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁 ) ) |
| 8 |
4 7
|
sylibr |
⊢ ( 𝑀 ∈ ℤ → ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 9 |
|
incom |
⊢ ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑀 } ) |
| 10 |
9
|
eqeq1i |
⊢ ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑀 } ) = ∅ ) |
| 11 |
|
disjsn |
⊢ ( ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 12 |
10 11
|
bitri |
⊢ ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 13 |
8 12
|
sylibr |
⊢ ( 𝑀 ∈ ℤ → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| 14 |
|
fzonel |
⊢ ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) |
| 15 |
14
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 16 |
|
incom |
⊢ ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑁 } ) |
| 17 |
16
|
eqeq1i |
⊢ ( ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ) |
| 18 |
|
disjsn |
⊢ ( ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 19 |
17 18
|
bitri |
⊢ ( ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 20 |
15 19
|
sylibr |
⊢ ( 𝑀 ∈ ℤ → ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| 21 |
|
df-pr |
⊢ { 𝑀 , 𝑁 } = ( { 𝑀 } ∪ { 𝑁 } ) |
| 22 |
21
|
ineq1i |
⊢ ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ( ( { 𝑀 } ∪ { 𝑁 } ) ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 23 |
22
|
eqeq1i |
⊢ ( ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( { 𝑀 } ∪ { 𝑁 } ) ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| 24 |
|
undisj1 |
⊢ ( ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ∧ ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) ↔ ( ( { 𝑀 } ∪ { 𝑁 } ) ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| 25 |
23 24
|
bitr4i |
⊢ ( ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ∧ ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) ) |
| 26 |
13 20 25
|
sylanbrc |
⊢ ( 𝑀 ∈ ℤ → ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |