| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimtrls.t |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 8 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimwlk |
⊢ ( 𝜑 → 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐻 ∈ USPGraph ) |
| 12 |
2
|
uspgrf1oedg |
⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 14 |
1 2 3 4 5 6 7
|
upgrimtrlslem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 15 |
|
f1ocnvdm |
⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 16 |
13 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 17 |
16
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom 𝐹 ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 18 |
1 2 3 4 5 6 7
|
upgrimtrlslem2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 19 |
18
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 20 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 |
20
|
imaeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 23 |
6 22
|
f1mpt |
⊢ ( 𝐸 : dom 𝐹 –1-1→ dom 𝐽 ↔ ( ∀ 𝑥 ∈ dom 𝐹 ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 24 |
17 19 23
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 : dom 𝐹 –1-1→ dom 𝐽 ) |
| 25 |
|
eqidd |
⊢ ( 𝜑 → 𝐸 = 𝐸 ) |
| 26 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 27 |
7 8 26
|
3syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 28 |
1 2 3 4 5 6 27
|
upgrimwlklem1 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 30 |
|
wrddm |
⊢ ( 𝐹 ∈ Word dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 31 |
8 26 30
|
3syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 32 |
7 31
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 33 |
29 32
|
eqtr4d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = dom 𝐹 ) |
| 34 |
|
eqidd |
⊢ ( 𝜑 → dom 𝐽 = dom 𝐽 ) |
| 35 |
25 33 34
|
f1eq123d |
⊢ ( 𝜑 → ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 ↔ 𝐸 : dom 𝐹 –1-1→ dom 𝐽 ) ) |
| 36 |
24 35
|
mpbird |
⊢ ( 𝜑 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 ) |
| 37 |
|
df-f1 |
⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 ↔ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ∧ Fun ◡ 𝐸 ) ) |
| 38 |
37
|
simprbi |
⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 → Fun ◡ 𝐸 ) |
| 39 |
36 38
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝐸 ) |
| 40 |
|
istrl |
⊢ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ 𝐸 ) ) |
| 41 |
10 39 40
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |