| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimtrls.t |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 8 |
2
|
uspgrf1oedg |
⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 9 |
|
f1of1 |
⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) |
| 10 |
4 8 9
|
3syl |
⊢ ( 𝜑 → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) |
| 11 |
1 2 3 4 5 6 7
|
upgrimtrlslem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 12 |
|
edgval |
⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) |
| 13 |
2
|
eqcomi |
⊢ ( iEdg ‘ 𝐻 ) = 𝐽 |
| 14 |
13
|
rneqi |
⊢ ran ( iEdg ‘ 𝐻 ) = ran 𝐽 |
| 15 |
12 14
|
eqtri |
⊢ ( Edg ‘ 𝐻 ) = ran 𝐽 |
| 16 |
11 15
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ran 𝐽 ) |
| 17 |
1 2 3 4 5 6 7
|
upgrimtrlslem1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 18 |
17 15
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ran 𝐽 ) |
| 19 |
16 18
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ran 𝐽 ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ran 𝐽 ) ) |
| 20 |
|
f1ocnvfvrneq |
⊢ ( ( 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ∧ ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ran 𝐽 ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ran 𝐽 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 21 |
10 19 20
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 22 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 23 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 24 |
22 23
|
grimf1o |
⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 25 |
|
f1of1 |
⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 26 |
5 24 25
|
3syl |
⊢ ( 𝜑 → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 27 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 28 |
3 27
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 29 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 30 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 31 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 32 |
|
id |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 33 |
32
|
ffdmd |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 34 |
30 31 33
|
3syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 35 |
7 29 34
|
3syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 36 |
35
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) |
| 37 |
22 1
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 38 |
28 36 37
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 39 |
35
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ∈ dom 𝐼 ) |
| 40 |
22 1
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐹 ‘ 𝑦 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 41 |
28 39 40
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 42 |
38 41
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 43 |
|
f1imaeq |
⊢ ( ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 44 |
26 42 43
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 45 |
1
|
uspgrf1oedg |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 46 |
|
f1of1 |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 47 |
3 45 46
|
3syl |
⊢ ( 𝜑 → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 48 |
1
|
trlf1 |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 49 |
|
f1f |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 50 |
|
fdm |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 51 |
50
|
eqcomd |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 52 |
49 51
|
syl |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 53 |
|
f1eq2 |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ) |
| 54 |
53
|
biimpcd |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 → 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ) |
| 55 |
52 54
|
mpd |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) |
| 56 |
7 48 55
|
3syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) |
| 57 |
47 56
|
jca |
⊢ ( 𝜑 → ( 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ∧ 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ) |
| 58 |
|
f1cofveqaeq |
⊢ ( ( ( 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ∧ 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 59 |
57 58
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 60 |
44 59
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
| 61 |
21 60
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) |