| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trlf1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 3 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐹  ∈  Word  dom  𝐼 ) | 
						
							| 4 |  | wrdf | ⊢ ( 𝐹  ∈  Word  dom  𝐼  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐼 ) | 
						
							| 5 |  | df-f1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼  ↔  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐼  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 6 | 5 | simplbi2 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐼  →  ( Fun  ◡ 𝐹  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼 ) ) | 
						
							| 7 | 3 4 6 | 3syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( Fun  ◡ 𝐹  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼 ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝐹 )  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼 ) | 
						
							| 9 | 2 8 | sylbi | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼 ) |