Metamath Proof Explorer


Theorem upgrimtrlslem1

Description: Lemma 1 for upgrimtrls . (Contributed by AV, 29-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
upgrimtrls.t ( 𝜑𝐹 ( Trails ‘ 𝐺 ) 𝑃 )
Assertion upgrimtrlslem1 ( ( 𝜑𝑋 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
2 upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
3 upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
4 upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
5 upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
6 upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
7 upgrimtrls.t ( 𝜑𝐹 ( Trails ‘ 𝐺 ) 𝑃 )
8 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
9 3 8 syl ( 𝜑𝐺 ∈ UHGraph )
10 uspgruhgr ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph )
11 4 10 syl ( 𝜑𝐻 ∈ UHGraph )
12 9 11 jca ( 𝜑 → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) )
13 12 adantr ( ( 𝜑𝑋 ∈ dom 𝐹 ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) )
14 5 adantr ( ( 𝜑𝑋 ∈ dom 𝐹 ) → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
15 1 uhgrfun ( 𝐺 ∈ UHGraph → Fun 𝐼 )
16 9 15 syl ( 𝜑 → Fun 𝐼 )
17 trliswlk ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
18 1 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom 𝐼 )
19 wrdf ( 𝐹 ∈ Word dom 𝐼𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 )
20 19 ffdmd ( 𝐹 ∈ Word dom 𝐼𝐹 : dom 𝐹 ⟶ dom 𝐼 )
21 18 20 syl ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 : dom 𝐹 ⟶ dom 𝐼 )
22 7 17 21 3syl ( 𝜑𝐹 : dom 𝐹 ⟶ dom 𝐼 )
23 22 ffvelcdmda ( ( 𝜑𝑋 ∈ dom 𝐹 ) → ( 𝐹𝑋 ) ∈ dom 𝐼 )
24 1 iedgedg ( ( Fun 𝐼 ∧ ( 𝐹𝑋 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) )
25 16 23 24 syl2an2r ( ( 𝜑𝑋 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) )
26 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
27 eqid ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 )
28 26 27 uhgrimedgi ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) )
29 13 14 25 28 syl12anc ( ( 𝜑𝑋 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) )