| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimtrls.t |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 8 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 10 |
|
uspgruhgr |
⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) |
| 12 |
9 11
|
jca |
⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ dom 𝐹 ) → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 15 |
1
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 16 |
9 15
|
syl |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 17 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 18 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 19 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 20 |
19
|
ffdmd |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 21 |
18 20
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 22 |
7 17 21
|
3syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 23 |
22
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) |
| 24 |
1
|
iedgedg |
⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 25 |
16 23 24
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 26 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 27 |
|
eqid |
⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) |
| 28 |
26 27
|
uhgrimedgi |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 29 |
13 14 25 28
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |