Metamath Proof Explorer


Theorem upgrimtrlslem1

Description: Lemma 1 for upgrimtrls . (Contributed by AV, 29-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimtrls.t φ F Trails G P
Assertion upgrimtrlslem1 φ X dom F N I F X Edg H

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimtrls.t φ F Trails G P
8 uspgruhgr G USHGraph G UHGraph
9 3 8 syl φ G UHGraph
10 uspgruhgr H USHGraph H UHGraph
11 4 10 syl φ H UHGraph
12 9 11 jca φ G UHGraph H UHGraph
13 12 adantr φ X dom F G UHGraph H UHGraph
14 5 adantr φ X dom F N G GraphIso H
15 1 uhgrfun G UHGraph Fun I
16 9 15 syl φ Fun I
17 trliswlk F Trails G P F Walks G P
18 1 wlkf F Walks G P F Word dom I
19 wrdf F Word dom I F : 0 ..^ F dom I
20 19 ffdmd F Word dom I F : dom F dom I
21 18 20 syl F Walks G P F : dom F dom I
22 7 17 21 3syl φ F : dom F dom I
23 22 ffvelcdmda φ X dom F F X dom I
24 1 iedgedg Fun I F X dom I I F X Edg G
25 16 23 24 syl2an2r φ X dom F I F X Edg G
26 eqid Edg G = Edg G
27 eqid Edg H = Edg H
28 26 27 uhgrimedgi G UHGraph H UHGraph N G GraphIso H I F X Edg G N I F X Edg H
29 13 14 25 28 syl12anc φ X dom F N I F X Edg H