Metamath Proof Explorer


Theorem upgrimtrls

Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimtrls.t φ F Trails G P
Assertion upgrimtrls φ E Trails H N P

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimtrls.t φ F Trails G P
8 trliswlk F Trails G P F Walks G P
9 7 8 syl φ F Walks G P
10 1 2 3 4 5 6 9 upgrimwlk φ E Walks H N P
11 4 adantr φ x dom F H USHGraph
12 2 uspgrf1oedg H USHGraph J : dom J 1-1 onto Edg H
13 11 12 syl φ x dom F J : dom J 1-1 onto Edg H
14 1 2 3 4 5 6 7 upgrimtrlslem1 φ x dom F N I F x Edg H
15 f1ocnvdm J : dom J 1-1 onto Edg H N I F x Edg H J -1 N I F x dom J
16 13 14 15 syl2anc φ x dom F J -1 N I F x dom J
17 16 ralrimiva φ x dom F J -1 N I F x dom J
18 1 2 3 4 5 6 7 upgrimtrlslem2 φ x dom F y dom F J -1 N I F x = J -1 N I F y x = y
19 18 ralrimivva φ x dom F y dom F J -1 N I F x = J -1 N I F y x = y
20 2fveq3 x = y I F x = I F y
21 20 imaeq2d x = y N I F x = N I F y
22 21 fveq2d x = y J -1 N I F x = J -1 N I F y
23 6 22 f1mpt E : dom F 1-1 dom J x dom F J -1 N I F x dom J x dom F y dom F J -1 N I F x = J -1 N I F y x = y
24 17 19 23 sylanbrc φ E : dom F 1-1 dom J
25 eqidd φ E = E
26 1 wlkf F Walks G P F Word dom I
27 7 8 26 3syl φ F Word dom I
28 1 2 3 4 5 6 27 upgrimwlklem1 φ E = F
29 28 oveq2d φ 0 ..^ E = 0 ..^ F
30 wrddm F Word dom I dom F = 0 ..^ F
31 8 26 30 3syl F Trails G P dom F = 0 ..^ F
32 7 31 syl φ dom F = 0 ..^ F
33 29 32 eqtr4d φ 0 ..^ E = dom F
34 eqidd φ dom J = dom J
35 25 33 34 f1eq123d φ E : 0 ..^ E 1-1 dom J E : dom F 1-1 dom J
36 24 35 mpbird φ E : 0 ..^ E 1-1 dom J
37 df-f1 E : 0 ..^ E 1-1 dom J E : 0 ..^ E dom J Fun E -1
38 37 simprbi E : 0 ..^ E 1-1 dom J Fun E -1
39 36 38 syl φ Fun E -1
40 istrl E Trails H N P E Walks H N P Fun E -1
41 10 39 40 sylanbrc φ E Trails H N P