| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
upgrimwlk.j |
|- J = ( iEdg ` H ) |
| 3 |
|
upgrimwlk.g |
|- ( ph -> G e. USPGraph ) |
| 4 |
|
upgrimwlk.h |
|- ( ph -> H e. USPGraph ) |
| 5 |
|
upgrimwlk.n |
|- ( ph -> N e. ( G GraphIso H ) ) |
| 6 |
|
upgrimwlk.e |
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
| 7 |
|
upgrimtrls.t |
|- ( ph -> F ( Trails ` G ) P ) |
| 8 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
| 9 |
7 8
|
syl |
|- ( ph -> F ( Walks ` G ) P ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimwlk |
|- ( ph -> E ( Walks ` H ) ( N o. P ) ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ x e. dom F ) -> H e. USPGraph ) |
| 12 |
2
|
uspgrf1oedg |
|- ( H e. USPGraph -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 13 |
11 12
|
syl |
|- ( ( ph /\ x e. dom F ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 14 |
1 2 3 4 5 6 7
|
upgrimtrlslem1 |
|- ( ( ph /\ x e. dom F ) -> ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) |
| 15 |
|
f1ocnvdm |
|- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ph /\ x e. dom F ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 17 |
16
|
ralrimiva |
|- ( ph -> A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 18 |
1 2 3 4 5 6 7
|
upgrimtrlslem2 |
|- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) |
| 19 |
18
|
ralrimivva |
|- ( ph -> A. x e. dom F A. y e. dom F ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) |
| 20 |
|
2fveq3 |
|- ( x = y -> ( I ` ( F ` x ) ) = ( I ` ( F ` y ) ) ) |
| 21 |
20
|
imaeq2d |
|- ( x = y -> ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` y ) ) ) ) |
| 22 |
21
|
fveq2d |
|- ( x = y -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) ) |
| 23 |
6 22
|
f1mpt |
|- ( E : dom F -1-1-> dom J <-> ( A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J /\ A. x e. dom F A. y e. dom F ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) ) |
| 24 |
17 19 23
|
sylanbrc |
|- ( ph -> E : dom F -1-1-> dom J ) |
| 25 |
|
eqidd |
|- ( ph -> E = E ) |
| 26 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 27 |
7 8 26
|
3syl |
|- ( ph -> F e. Word dom I ) |
| 28 |
1 2 3 4 5 6 27
|
upgrimwlklem1 |
|- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 30 |
|
wrddm |
|- ( F e. Word dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
| 31 |
8 26 30
|
3syl |
|- ( F ( Trails ` G ) P -> dom F = ( 0 ..^ ( # ` F ) ) ) |
| 32 |
7 31
|
syl |
|- ( ph -> dom F = ( 0 ..^ ( # ` F ) ) ) |
| 33 |
29 32
|
eqtr4d |
|- ( ph -> ( 0 ..^ ( # ` E ) ) = dom F ) |
| 34 |
|
eqidd |
|- ( ph -> dom J = dom J ) |
| 35 |
25 33 34
|
f1eq123d |
|- ( ph -> ( E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J <-> E : dom F -1-1-> dom J ) ) |
| 36 |
24 35
|
mpbird |
|- ( ph -> E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J ) |
| 37 |
|
df-f1 |
|- ( E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J <-> ( E : ( 0 ..^ ( # ` E ) ) --> dom J /\ Fun `' E ) ) |
| 38 |
37
|
simprbi |
|- ( E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J -> Fun `' E ) |
| 39 |
36 38
|
syl |
|- ( ph -> Fun `' E ) |
| 40 |
|
istrl |
|- ( E ( Trails ` H ) ( N o. P ) <-> ( E ( Walks ` H ) ( N o. P ) /\ Fun `' E ) ) |
| 41 |
10 39 40
|
sylanbrc |
|- ( ph -> E ( Trails ` H ) ( N o. P ) ) |