| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
upgrimwlk.j |
|- J = ( iEdg ` H ) |
| 3 |
|
upgrimwlk.g |
|- ( ph -> G e. USPGraph ) |
| 4 |
|
upgrimwlk.h |
|- ( ph -> H e. USPGraph ) |
| 5 |
|
upgrimwlk.n |
|- ( ph -> N e. ( G GraphIso H ) ) |
| 6 |
|
upgrimwlk.e |
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
| 7 |
|
upgrimpths.p |
|- ( ph -> F ( Paths ` G ) P ) |
| 8 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
| 9 |
8
|
simp2bi |
|- ( F ( Paths ` G ) P -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 10 |
7 9
|
syl |
|- ( ph -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 11 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 12 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 13 |
11 12
|
grimf1o |
|- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 14 |
|
dff1o3 |
|- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) <-> ( N : ( Vtx ` G ) -onto-> ( Vtx ` H ) /\ Fun `' N ) ) |
| 15 |
14
|
simprbi |
|- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> Fun `' N ) |
| 16 |
5 13 15
|
3syl |
|- ( ph -> Fun `' N ) |
| 17 |
|
funco |
|- ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ Fun `' N ) -> Fun ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) ) |
| 18 |
10 16 17
|
syl2anc |
|- ( ph -> Fun ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) ) |
| 19 |
|
resco |
|- ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) = ( N o. ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 20 |
19
|
cnveqi |
|- `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) = `' ( N o. ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 21 |
|
cnvco |
|- `' ( N o. ( P |` ( 1 ..^ ( # ` F ) ) ) ) = ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) |
| 22 |
20 21
|
eqtri |
|- `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) = ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) |
| 23 |
22
|
funeqi |
|- ( Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) <-> Fun ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) ) |
| 24 |
18 23
|
sylibr |
|- ( ph -> Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |