Metamath Proof Explorer


Theorem upgrimpthslem1

Description: Lemma 1 for upgrimpths . (Contributed by AV, 30-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
upgrimpths.p ( 𝜑𝐹 ( Paths ‘ 𝐺 ) 𝑃 )
Assertion upgrimpthslem1 ( 𝜑 → Fun ( ( 𝑁𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
2 upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
3 upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
4 upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
5 upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
6 upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
7 upgrimpths.p ( 𝜑𝐹 ( Paths ‘ 𝐺 ) 𝑃 )
8 ispth ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) )
9 8 simp2bi ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → Fun ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )
10 7 9 syl ( 𝜑 → Fun ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )
11 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
12 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
13 11 12 grimf1o ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) )
14 dff1o3 ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( 𝑁 : ( Vtx ‘ 𝐺 ) –onto→ ( Vtx ‘ 𝐻 ) ∧ Fun 𝑁 ) )
15 14 simprbi ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → Fun 𝑁 )
16 5 13 15 3syl ( 𝜑 → Fun 𝑁 )
17 funco ( ( Fun ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ Fun 𝑁 ) → Fun ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ 𝑁 ) )
18 10 16 17 syl2anc ( 𝜑 → Fun ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ 𝑁 ) )
19 resco ( ( 𝑁𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )
20 19 cnveqi ( ( 𝑁𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )
21 cnvco ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ 𝑁 )
22 20 21 eqtri ( ( 𝑁𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ 𝑁 )
23 22 funeqi ( Fun ( ( 𝑁𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ 𝑁 ) )
24 18 23 sylibr ( 𝜑 → Fun ( ( 𝑁𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )