| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimpths.p |
⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 8 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 9 |
8
|
simp2bi |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 12 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 13 |
11 12
|
grimf1o |
⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 14 |
|
dff1o3 |
⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( 𝑁 : ( Vtx ‘ 𝐺 ) –onto→ ( Vtx ‘ 𝐻 ) ∧ Fun ◡ 𝑁 ) ) |
| 15 |
14
|
simprbi |
⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → Fun ◡ 𝑁 ) |
| 16 |
5 13 15
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝑁 ) |
| 17 |
|
funco |
⊢ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ Fun ◡ 𝑁 ) → Fun ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) ) |
| 18 |
10 16 17
|
syl2anc |
⊢ ( 𝜑 → Fun ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) ) |
| 19 |
|
resco |
⊢ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 20 |
19
|
cnveqi |
⊢ ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 21 |
|
cnvco |
⊢ ◡ ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) |
| 22 |
20 21
|
eqtri |
⊢ ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) |
| 23 |
22
|
funeqi |
⊢ ( Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) ) |
| 24 |
18 23
|
sylibr |
⊢ ( 𝜑 → Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |