| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
upgrimwlk.j |
|- J = ( iEdg ` H ) |
| 3 |
|
upgrimwlk.g |
|- ( ph -> G e. USPGraph ) |
| 4 |
|
upgrimwlk.h |
|- ( ph -> H e. USPGraph ) |
| 5 |
|
upgrimwlk.n |
|- ( ph -> N e. ( G GraphIso H ) ) |
| 6 |
|
upgrimwlk.e |
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
| 7 |
|
upgrimwlk.w |
|- ( ph -> F ( Walks ` G ) P ) |
| 8 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 9 |
7 8
|
syl |
|- ( ph -> F e. Word dom I ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimwlklem2 |
|- ( ph -> E e. Word dom J ) |
| 11 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 12 |
11
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 13 |
7 12
|
syl |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 14 |
1 2 3 4 5 6 9 13
|
upgrimwlklem4 |
|- ( ph -> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) ) |
| 15 |
1 2 3 4 5 6 9
|
upgrimwlklem3 |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` E ) ) ) -> ( J ` ( E ` i ) ) = ( N " ( I ` ( F ` i ) ) ) ) |
| 16 |
1 2 3 4 5 6 7
|
upgrimwlklem5 |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` E ) ) ) -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) |
| 17 |
15 16
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` E ) ) ) -> ( J ` ( E ` i ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) |
| 18 |
17
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ ( # ` E ) ) ( J ` ( E ` i ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) |
| 19 |
|
uspgrupgr |
|- ( H e. USPGraph -> H e. UPGraph ) |
| 20 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 21 |
20 2
|
upgriswlk |
|- ( H e. UPGraph -> ( E ( Walks ` H ) ( N o. P ) <-> ( E e. Word dom J /\ ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) /\ A. i e. ( 0 ..^ ( # ` E ) ) ( J ` ( E ` i ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) ) ) |
| 22 |
4 19 21
|
3syl |
|- ( ph -> ( E ( Walks ` H ) ( N o. P ) <-> ( E e. Word dom J /\ ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) /\ A. i e. ( 0 ..^ ( # ` E ) ) ( J ` ( E ` i ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) ) ) |
| 23 |
10 14 18 22
|
mpbir3and |
|- ( ph -> E ( Walks ` H ) ( N o. P ) ) |