| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimwlk.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 8 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimwlklem2 |
⊢ ( 𝜑 → 𝐸 ∈ Word dom 𝐽 ) |
| 11 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 12 |
11
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 14 |
1 2 3 4 5 6 9 13
|
upgrimwlklem4 |
⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) |
| 15 |
1 2 3 4 5 6 9
|
upgrimwlklem3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 16 |
1 2 3 4 5 6 7
|
upgrimwlklem5 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 17 |
15 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 18 |
17
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 19 |
|
uspgrupgr |
⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph ) |
| 20 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 21 |
20 2
|
upgriswlk |
⊢ ( 𝐻 ∈ UPGraph → ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ∈ Word dom 𝐽 ∧ ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 22 |
4 19 21
|
3syl |
⊢ ( 𝜑 → ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ∈ Word dom 𝐽 ∧ ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 23 |
10 14 18 22
|
mpbir3and |
⊢ ( 𝜑 → 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |