Metamath Proof Explorer


Theorem upgrimwlk

Description: Graph isomorphisms between simple pseudographs map walks onto walks. (Contributed by AV, 28-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
upgrimwlk.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
Assertion upgrimwlk ( 𝜑𝐸 ( Walks ‘ 𝐻 ) ( 𝑁𝑃 ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
2 upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
3 upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
4 upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
5 upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
6 upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
7 upgrimwlk.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
8 1 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom 𝐼 )
9 7 8 syl ( 𝜑𝐹 ∈ Word dom 𝐼 )
10 1 2 3 4 5 6 9 upgrimwlklem2 ( 𝜑𝐸 ∈ Word dom 𝐽 )
11 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
12 11 wlkp ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
13 7 12 syl ( 𝜑𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
14 1 2 3 4 5 6 9 13 upgrimwlklem4 ( 𝜑 → ( 𝑁𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) )
15 1 2 3 4 5 6 9 upgrimwlklem3 ( ( 𝜑𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸𝑖 ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) )
16 1 2 3 4 5 6 7 upgrimwlklem5 ( ( 𝜑𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑖 ) ) ) = { ( ( 𝑁𝑃 ) ‘ 𝑖 ) , ( ( 𝑁𝑃 ) ‘ ( 𝑖 + 1 ) ) } )
17 15 16 eqtrd ( ( 𝜑𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸𝑖 ) ) = { ( ( 𝑁𝑃 ) ‘ 𝑖 ) , ( ( 𝑁𝑃 ) ‘ ( 𝑖 + 1 ) ) } )
18 17 ralrimiva ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸𝑖 ) ) = { ( ( 𝑁𝑃 ) ‘ 𝑖 ) , ( ( 𝑁𝑃 ) ‘ ( 𝑖 + 1 ) ) } )
19 uspgrupgr ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph )
20 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
21 20 2 upgriswlk ( 𝐻 ∈ UPGraph → ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁𝑃 ) ↔ ( 𝐸 ∈ Word dom 𝐽 ∧ ( 𝑁𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸𝑖 ) ) = { ( ( 𝑁𝑃 ) ‘ 𝑖 ) , ( ( 𝑁𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) )
22 4 19 21 3syl ( 𝜑 → ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁𝑃 ) ↔ ( 𝐸 ∈ Word dom 𝐽 ∧ ( 𝑁𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸𝑖 ) ) = { ( ( 𝑁𝑃 ) ‘ 𝑖 ) , ( ( 𝑁𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) )
23 10 14 18 22 mpbir3and ( 𝜑𝐸 ( Walks ‘ 𝐻 ) ( 𝑁𝑃 ) )