Metamath Proof Explorer


Theorem upgrimwlklem3

Description: Lemma 3 for upgrimwlk . (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
upgrimwlk.f ( 𝜑𝐹 ∈ Word dom 𝐼 )
Assertion upgrimwlklem3 ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸𝑋 ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
2 upgrimwlk.j 𝐽 = ( iEdg ‘ 𝐻 )
3 upgrimwlk.g ( 𝜑𝐺 ∈ USPGraph )
4 upgrimwlk.h ( 𝜑𝐻 ∈ USPGraph )
5 upgrimwlk.n ( 𝜑𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
6 upgrimwlk.e 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) )
7 upgrimwlk.f ( 𝜑𝐹 ∈ Word dom 𝐼 )
8 6 a1i ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) ) )
9 2fveq3 ( 𝑥 = 𝑋 → ( 𝐼 ‘ ( 𝐹𝑥 ) ) = ( 𝐼 ‘ ( 𝐹𝑋 ) ) )
10 9 imaeq2d ( 𝑥 = 𝑋 → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) )
11 10 fveq2d ( 𝑥 = 𝑋 → ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) = ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ) )
12 11 adantl ( ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ 𝑥 = 𝑋 ) → ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑥 ) ) ) ) = ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ) )
13 1 2 3 4 5 6 7 upgrimwlklem1 ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) )
14 13 oveq2d ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
15 wrdf ( 𝐹 ∈ Word dom 𝐼𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 )
16 fdm ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
17 16 eqcomd ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 )
18 15 17 syl ( 𝐹 ∈ Word dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 )
19 7 18 syl ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 )
20 14 19 eqtrd ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = dom 𝐹 )
21 20 eleq2d ( 𝜑 → ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝑋 ∈ dom 𝐹 ) )
22 21 biimpa ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝑋 ∈ dom 𝐹 )
23 fvexd ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ) ∈ V )
24 8 12 22 23 fvmptd ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐸𝑋 ) = ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ) )
25 24 fveq2d ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸𝑋 ) ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ) ) )
26 4 adantr ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝐻 ∈ USPGraph )
27 2 uspgrf1oedg ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
28 26 27 syl ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
29 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
30 3 29 syl ( 𝜑𝐺 ∈ UHGraph )
31 uspgruhgr ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph )
32 4 31 syl ( 𝜑𝐻 ∈ UHGraph )
33 30 32 jca ( 𝜑 → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) )
34 33 adantr ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) )
35 5 adantr ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) )
36 1 uhgrfun ( 𝐺 ∈ UHGraph → Fun 𝐼 )
37 30 36 syl ( 𝜑 → Fun 𝐼 )
38 37 adantr ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → Fun 𝐼 )
39 13 7 wrdfd ( 𝜑𝐹 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐼 )
40 39 ffvelcdmda ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐹𝑋 ) ∈ dom 𝐼 )
41 1 iedgedg ( ( Fun 𝐼 ∧ ( 𝐹𝑋 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) )
42 38 40 41 syl2anc ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) )
43 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
44 eqid ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 )
45 43 44 uhgrimedgi ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) )
46 34 35 42 45 syl12anc ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) )
47 f1ocnvfv2 ( ( 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) )
48 28 46 47 syl2anc ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) )
49 25 48 eqtrd ( ( 𝜑𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸𝑋 ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹𝑋 ) ) ) )