Metamath Proof Explorer


Theorem upgrimwlklem3

Description: Lemma 3 for upgrimwlk . (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimwlk.f φ F Word dom I
Assertion upgrimwlklem3 φ X 0 ..^ E J E X = N I F X

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimwlk.f φ F Word dom I
8 6 a1i φ X 0 ..^ E E = x dom F J -1 N I F x
9 2fveq3 x = X I F x = I F X
10 9 imaeq2d x = X N I F x = N I F X
11 10 fveq2d x = X J -1 N I F x = J -1 N I F X
12 11 adantl φ X 0 ..^ E x = X J -1 N I F x = J -1 N I F X
13 1 2 3 4 5 6 7 upgrimwlklem1 φ E = F
14 13 oveq2d φ 0 ..^ E = 0 ..^ F
15 wrdf F Word dom I F : 0 ..^ F dom I
16 fdm F : 0 ..^ F dom I dom F = 0 ..^ F
17 16 eqcomd F : 0 ..^ F dom I 0 ..^ F = dom F
18 15 17 syl F Word dom I 0 ..^ F = dom F
19 7 18 syl φ 0 ..^ F = dom F
20 14 19 eqtrd φ 0 ..^ E = dom F
21 20 eleq2d φ X 0 ..^ E X dom F
22 21 biimpa φ X 0 ..^ E X dom F
23 fvexd φ X 0 ..^ E J -1 N I F X V
24 8 12 22 23 fvmptd φ X 0 ..^ E E X = J -1 N I F X
25 24 fveq2d φ X 0 ..^ E J E X = J J -1 N I F X
26 4 adantr φ X 0 ..^ E H USHGraph
27 2 uspgrf1oedg H USHGraph J : dom J 1-1 onto Edg H
28 26 27 syl φ X 0 ..^ E J : dom J 1-1 onto Edg H
29 uspgruhgr G USHGraph G UHGraph
30 3 29 syl φ G UHGraph
31 uspgruhgr H USHGraph H UHGraph
32 4 31 syl φ H UHGraph
33 30 32 jca φ G UHGraph H UHGraph
34 33 adantr φ X 0 ..^ E G UHGraph H UHGraph
35 5 adantr φ X 0 ..^ E N G GraphIso H
36 1 uhgrfun G UHGraph Fun I
37 30 36 syl φ Fun I
38 37 adantr φ X 0 ..^ E Fun I
39 13 7 wrdfd φ F : 0 ..^ E dom I
40 39 ffvelcdmda φ X 0 ..^ E F X dom I
41 1 iedgedg Fun I F X dom I I F X Edg G
42 38 40 41 syl2anc φ X 0 ..^ E I F X Edg G
43 eqid Edg G = Edg G
44 eqid Edg H = Edg H
45 43 44 uhgrimedgi G UHGraph H UHGraph N G GraphIso H I F X Edg G N I F X Edg H
46 34 35 42 45 syl12anc φ X 0 ..^ E N I F X Edg H
47 f1ocnvfv2 J : dom J 1-1 onto Edg H N I F X Edg H J J -1 N I F X = N I F X
48 28 46 47 syl2anc φ X 0 ..^ E J J -1 N I F X = N I F X
49 25 48 eqtrd φ X 0 ..^ E J E X = N I F X