Metamath Proof Explorer


Theorem upgrimwlklem4

Description: Lemma 4 for upgrimwlk . (Contributed by AV, 28-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimwlk.f φ F Word dom I
upgrimwlklem.p φ P : 0 F Vtx G
Assertion upgrimwlklem4 φ N P : 0 E Vtx H

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimwlk.f φ F Word dom I
8 upgrimwlklem.p φ P : 0 F Vtx G
9 eqid Vtx G = Vtx G
10 eqid Vtx H = Vtx H
11 9 10 grimf1o N G GraphIso H N : Vtx G 1-1 onto Vtx H
12 f1of N : Vtx G 1-1 onto Vtx H N : Vtx G Vtx H
13 5 11 12 3syl φ N : Vtx G Vtx H
14 1 2 3 4 5 6 7 upgrimwlklem1 φ E = F
15 14 oveq2d φ 0 E = 0 F
16 15 feq2d φ P : 0 E Vtx G P : 0 F Vtx G
17 8 16 mpbird φ P : 0 E Vtx G
18 13 17 fcod φ N P : 0 E Vtx H