Metamath Proof Explorer


Theorem upgrimwlklem5

Description: Lemma 5 for upgrimwlk . (Contributed by AV, 28-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimwlk.w φ F Walks G P
Assertion upgrimwlklem5 φ i 0 ..^ E N I F i = N P i N P i + 1

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimwlk.w φ F Walks G P
8 1 wlkf F Walks G P F Word dom I
9 7 8 syl φ F Word dom I
10 1 2 3 4 5 6 9 upgrimwlklem1 φ E = F
11 10 oveq2d φ 0 ..^ E = 0 ..^ F
12 11 eleq2d φ i 0 ..^ E i 0 ..^ F
13 uspgrupgr G USHGraph G UPGraph
14 3 13 syl φ G UPGraph
15 1 upgrwlkedg G UPGraph F Walks G P x 0 ..^ F I F x = P x P x + 1
16 14 7 15 syl2anc φ x 0 ..^ F I F x = P x P x + 1
17 2fveq3 x = i I F x = I F i
18 fveq2 x = i P x = P i
19 fvoveq1 x = i P x + 1 = P i + 1
20 18 19 preq12d x = i P x P x + 1 = P i P i + 1
21 17 20 eqeq12d x = i I F x = P x P x + 1 I F i = P i P i + 1
22 21 rspcv i 0 ..^ F x 0 ..^ F I F x = P x P x + 1 I F i = P i P i + 1
23 22 adantl φ i 0 ..^ F x 0 ..^ F I F x = P x P x + 1 I F i = P i P i + 1
24 imaeq2 I F i = P i P i + 1 N I F i = N P i P i + 1
25 eqid Vtx G = Vtx G
26 eqid Vtx H = Vtx H
27 25 26 grimf1o N G GraphIso H N : Vtx G 1-1 onto Vtx H
28 f1ofn N : Vtx G 1-1 onto Vtx H N Fn Vtx G
29 5 27 28 3syl φ N Fn Vtx G
30 29 adantr φ i 0 ..^ F N Fn Vtx G
31 25 wlkp F Walks G P P : 0 F Vtx G
32 7 31 syl φ P : 0 F Vtx G
33 32 adantr φ i 0 ..^ F P : 0 F Vtx G
34 elfzofz i 0 ..^ F i 0 F
35 34 adantl φ i 0 ..^ F i 0 F
36 33 35 ffvelcdmd φ i 0 ..^ F P i Vtx G
37 fzofzp1 i 0 ..^ F i + 1 0 F
38 37 adantl φ i 0 ..^ F i + 1 0 F
39 33 38 ffvelcdmd φ i 0 ..^ F P i + 1 Vtx G
40 fnimapr N Fn Vtx G P i Vtx G P i + 1 Vtx G N P i P i + 1 = N P i N P i + 1
41 30 36 39 40 syl3anc φ i 0 ..^ F N P i P i + 1 = N P i N P i + 1
42 7 adantr φ i 0 ..^ F F Walks G P
43 42 31 syl φ i 0 ..^ F P : 0 F Vtx G
44 43 35 fvco3d φ i 0 ..^ F N P i = N P i
45 33 38 fvco3d φ i 0 ..^ F N P i + 1 = N P i + 1
46 44 45 preq12d φ i 0 ..^ F N P i N P i + 1 = N P i N P i + 1
47 41 46 eqtr4d φ i 0 ..^ F N P i P i + 1 = N P i N P i + 1
48 24 47 sylan9eqr φ i 0 ..^ F I F i = P i P i + 1 N I F i = N P i N P i + 1
49 48 ex φ i 0 ..^ F I F i = P i P i + 1 N I F i = N P i N P i + 1
50 23 49 syld φ i 0 ..^ F x 0 ..^ F I F x = P x P x + 1 N I F i = N P i N P i + 1
51 50 ex φ i 0 ..^ F x 0 ..^ F I F x = P x P x + 1 N I F i = N P i N P i + 1
52 16 51 mpid φ i 0 ..^ F N I F i = N P i N P i + 1
53 12 52 sylbid φ i 0 ..^ E N I F i = N P i N P i + 1
54 53 imp φ i 0 ..^ E N I F i = N P i N P i + 1