| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimwlk.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 8 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 |
1 2 3 4 5 6 9
|
upgrimwlklem1 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 13 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 15 |
1
|
upgrwlkedg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
| 16 |
14 7 15
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
| 17 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑖 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑖 ) ) |
| 19 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑖 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
| 20 |
18 19
|
preq12d |
⊢ ( 𝑥 = 𝑖 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 21 |
17 20
|
eqeq12d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 22 |
21
|
rspcv |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 24 |
|
imaeq2 |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 25 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 26 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 27 |
25 26
|
grimf1o |
⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 28 |
|
f1ofn |
⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑁 Fn ( Vtx ‘ 𝐺 ) ) |
| 29 |
5 27 28
|
3syl |
⊢ ( 𝜑 → 𝑁 Fn ( Vtx ‘ 𝐺 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 Fn ( Vtx ‘ 𝐺 ) ) |
| 31 |
25
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 32 |
7 31
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 34 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 36 |
33 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 37 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 39 |
33 38
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 40 |
|
fnimapr |
⊢ ( ( 𝑁 Fn ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) = { ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) , ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 41 |
30 36 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) = { ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) , ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 42 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 43 |
42 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 44 |
43 35
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) = ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) ) |
| 45 |
33 38
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) = ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
| 46 |
44 45
|
preq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } = { ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) , ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 47 |
41 46
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 48 |
24 47
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 49 |
48
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 50 |
23 49
|
syld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 51 |
50
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 52 |
16 51
|
mpid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 53 |
12 52
|
sylbid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 54 |
53
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |