Metamath Proof Explorer


Theorem upgrimwlklem4

Description: Lemma 4 for upgrimwlk . (Contributed by AV, 28-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i
|- I = ( iEdg ` G )
upgrimwlk.j
|- J = ( iEdg ` H )
upgrimwlk.g
|- ( ph -> G e. USPGraph )
upgrimwlk.h
|- ( ph -> H e. USPGraph )
upgrimwlk.n
|- ( ph -> N e. ( G GraphIso H ) )
upgrimwlk.e
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) )
upgrimwlk.f
|- ( ph -> F e. Word dom I )
upgrimwlklem.p
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) )
Assertion upgrimwlklem4
|- ( ph -> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i
 |-  I = ( iEdg ` G )
2 upgrimwlk.j
 |-  J = ( iEdg ` H )
3 upgrimwlk.g
 |-  ( ph -> G e. USPGraph )
4 upgrimwlk.h
 |-  ( ph -> H e. USPGraph )
5 upgrimwlk.n
 |-  ( ph -> N e. ( G GraphIso H ) )
6 upgrimwlk.e
 |-  E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) )
7 upgrimwlk.f
 |-  ( ph -> F e. Word dom I )
8 upgrimwlklem.p
 |-  ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) )
9 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
10 eqid
 |-  ( Vtx ` H ) = ( Vtx ` H )
11 9 10 grimf1o
 |-  ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) )
12 f1of
 |-  ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> N : ( Vtx ` G ) --> ( Vtx ` H ) )
13 5 11 12 3syl
 |-  ( ph -> N : ( Vtx ` G ) --> ( Vtx ` H ) )
14 1 2 3 4 5 6 7 upgrimwlklem1
 |-  ( ph -> ( # ` E ) = ( # ` F ) )
15 14 oveq2d
 |-  ( ph -> ( 0 ... ( # ` E ) ) = ( 0 ... ( # ` F ) ) )
16 15 feq2d
 |-  ( ph -> ( P : ( 0 ... ( # ` E ) ) --> ( Vtx ` G ) <-> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) )
17 8 16 mpbird
 |-  ( ph -> P : ( 0 ... ( # ` E ) ) --> ( Vtx ` G ) )
18 13 17 fcod
 |-  ( ph -> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) )