Metamath Proof Explorer


Theorem upgrimwlklem1

Description: Lemma 1 for upgrimwlk and upgrimwlklen . (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i
|- I = ( iEdg ` G )
upgrimwlk.j
|- J = ( iEdg ` H )
upgrimwlk.g
|- ( ph -> G e. USPGraph )
upgrimwlk.h
|- ( ph -> H e. USPGraph )
upgrimwlk.n
|- ( ph -> N e. ( G GraphIso H ) )
upgrimwlk.e
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) )
upgrimwlk.f
|- ( ph -> F e. Word dom I )
Assertion upgrimwlklem1
|- ( ph -> ( # ` E ) = ( # ` F ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i
 |-  I = ( iEdg ` G )
2 upgrimwlk.j
 |-  J = ( iEdg ` H )
3 upgrimwlk.g
 |-  ( ph -> G e. USPGraph )
4 upgrimwlk.h
 |-  ( ph -> H e. USPGraph )
5 upgrimwlk.n
 |-  ( ph -> N e. ( G GraphIso H ) )
6 upgrimwlk.e
 |-  E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) )
7 upgrimwlk.f
 |-  ( ph -> F e. Word dom I )
8 fvexd
 |-  ( ( ph /\ x e. dom F ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. _V )
9 8 ralrimiva
 |-  ( ph -> A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. _V )
10 eqid
 |-  ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) )
11 10 fnmpt
 |-  ( A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. _V -> ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) Fn dom F )
12 9 11 syl
 |-  ( ph -> ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) Fn dom F )
13 6 fneq1i
 |-  ( E Fn dom F <-> ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) Fn dom F )
14 12 13 sylibr
 |-  ( ph -> E Fn dom F )
15 hashfn
 |-  ( E Fn dom F -> ( # ` E ) = ( # ` dom F ) )
16 14 15 syl
 |-  ( ph -> ( # ` E ) = ( # ` dom F ) )
17 wrdf
 |-  ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I )
18 ffun
 |-  ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> Fun F )
19 7 17 18 3syl
 |-  ( ph -> Fun F )
20 19 funfnd
 |-  ( ph -> F Fn dom F )
21 hashfn
 |-  ( F Fn dom F -> ( # ` F ) = ( # ` dom F ) )
22 20 21 syl
 |-  ( ph -> ( # ` F ) = ( # ` dom F ) )
23 16 22 eqtr4d
 |-  ( ph -> ( # ` E ) = ( # ` F ) )