Description: Graph isomorphisms between simple pseudographs map walks onto walks of the same length. (Contributed by AV, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimwlk.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| Assertion | upgrimwlklen | |- ( ph -> ( E ( Walks ` H ) ( N o. P ) /\ ( # ` E ) = ( # ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimwlk.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 8 | 1 2 3 4 5 6 7 | upgrimwlk | |- ( ph -> E ( Walks ` H ) ( N o. P ) ) |
| 9 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 10 | 7 9 | syl | |- ( ph -> F e. Word dom I ) |
| 11 | 1 2 3 4 5 6 10 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 12 | 8 11 | jca | |- ( ph -> ( E ( Walks ` H ) ( N o. P ) /\ ( # ` E ) = ( # ` F ) ) ) |