Metamath Proof Explorer


Theorem upgrimtrlslem1

Description: Lemma 1 for upgrimtrls . (Contributed by AV, 29-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i
|- I = ( iEdg ` G )
upgrimwlk.j
|- J = ( iEdg ` H )
upgrimwlk.g
|- ( ph -> G e. USPGraph )
upgrimwlk.h
|- ( ph -> H e. USPGraph )
upgrimwlk.n
|- ( ph -> N e. ( G GraphIso H ) )
upgrimwlk.e
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) )
upgrimtrls.t
|- ( ph -> F ( Trails ` G ) P )
Assertion upgrimtrlslem1
|- ( ( ph /\ X e. dom F ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) )

Proof

Step Hyp Ref Expression
1 upgrimwlk.i
 |-  I = ( iEdg ` G )
2 upgrimwlk.j
 |-  J = ( iEdg ` H )
3 upgrimwlk.g
 |-  ( ph -> G e. USPGraph )
4 upgrimwlk.h
 |-  ( ph -> H e. USPGraph )
5 upgrimwlk.n
 |-  ( ph -> N e. ( G GraphIso H ) )
6 upgrimwlk.e
 |-  E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) )
7 upgrimtrls.t
 |-  ( ph -> F ( Trails ` G ) P )
8 uspgruhgr
 |-  ( G e. USPGraph -> G e. UHGraph )
9 3 8 syl
 |-  ( ph -> G e. UHGraph )
10 uspgruhgr
 |-  ( H e. USPGraph -> H e. UHGraph )
11 4 10 syl
 |-  ( ph -> H e. UHGraph )
12 9 11 jca
 |-  ( ph -> ( G e. UHGraph /\ H e. UHGraph ) )
13 12 adantr
 |-  ( ( ph /\ X e. dom F ) -> ( G e. UHGraph /\ H e. UHGraph ) )
14 5 adantr
 |-  ( ( ph /\ X e. dom F ) -> N e. ( G GraphIso H ) )
15 1 uhgrfun
 |-  ( G e. UHGraph -> Fun I )
16 9 15 syl
 |-  ( ph -> Fun I )
17 trliswlk
 |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P )
18 1 wlkf
 |-  ( F ( Walks ` G ) P -> F e. Word dom I )
19 wrdf
 |-  ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I )
20 19 ffdmd
 |-  ( F e. Word dom I -> F : dom F --> dom I )
21 18 20 syl
 |-  ( F ( Walks ` G ) P -> F : dom F --> dom I )
22 7 17 21 3syl
 |-  ( ph -> F : dom F --> dom I )
23 22 ffvelcdmda
 |-  ( ( ph /\ X e. dom F ) -> ( F ` X ) e. dom I )
24 1 iedgedg
 |-  ( ( Fun I /\ ( F ` X ) e. dom I ) -> ( I ` ( F ` X ) ) e. ( Edg ` G ) )
25 16 23 24 syl2an2r
 |-  ( ( ph /\ X e. dom F ) -> ( I ` ( F ` X ) ) e. ( Edg ` G ) )
26 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
27 eqid
 |-  ( Edg ` H ) = ( Edg ` H )
28 26 27 uhgrimedgi
 |-  ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( N e. ( G GraphIso H ) /\ ( I ` ( F ` X ) ) e. ( Edg ` G ) ) ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) )
29 13 14 25 28 syl12anc
 |-  ( ( ph /\ X e. dom F ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) )