| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrimedgi.e |
|- E = ( Edg ` G ) |
| 2 |
|
uhgrimedgi.d |
|- D = ( Edg ` H ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 6 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 7 |
3 4 5 6
|
grimprop |
|- ( F e. ( G GraphIso H ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 8 |
1
|
eleq2i |
|- ( K e. E <-> K e. ( Edg ` G ) ) |
| 9 |
5
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 10 |
5
|
edgiedgb |
|- ( Fun ( iEdg ` G ) -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 11 |
9 10
|
syl |
|- ( G e. UHGraph -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 12 |
8 11
|
bitrid |
|- ( G e. UHGraph -> ( K e. E <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 13 |
12
|
adantr |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 14 |
|
simplr |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> k e. dom ( iEdg ` G ) ) |
| 15 |
|
2fveq3 |
|- ( i = k -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) ) |
| 16 |
|
fveq2 |
|- ( i = k -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` k ) ) |
| 17 |
16
|
imaeq2d |
|- ( i = k -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
| 18 |
15 17
|
eqeq12d |
|- ( i = k -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 19 |
18
|
rspcv |
|- ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 20 |
14 19
|
syl |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 21 |
6
|
uhgrfun |
|- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
| 22 |
21
|
ad3antlr |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> Fun ( iEdg ` H ) ) |
| 23 |
|
f1of |
|- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 24 |
23
|
adantl |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 25 |
14
|
adantr |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> k e. dom ( iEdg ` G ) ) |
| 26 |
24 25
|
ffvelcdmd |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( j ` k ) e. dom ( iEdg ` H ) ) |
| 27 |
6
|
iedgedg |
|- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 28 |
22 26 27
|
syl2an2r |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 29 |
28 2
|
eleqtrrdi |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) |
| 30 |
|
eleq1 |
|- ( ( F " ( ( iEdg ` G ) ` k ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) ) |
| 31 |
30
|
eqcoms |
|- ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) ) |
| 32 |
29 31
|
syl5ibrcom |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 33 |
32
|
ex |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 34 |
20 33
|
syl5d |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 35 |
34
|
impd |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 36 |
35
|
ex |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 37 |
36
|
adantr |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 38 |
37
|
3imp |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) |
| 39 |
|
imaeq2 |
|- ( K = ( ( iEdg ` G ) ` k ) -> ( F " K ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
| 40 |
39
|
eleq1d |
|- ( K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 41 |
40
|
adantl |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 42 |
41
|
3ad2ant1 |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 43 |
38 42
|
mpbird |
|- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " K ) e. D ) |
| 44 |
43
|
3exp |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) |
| 45 |
44
|
ex |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( K = ( ( iEdg ` G ) ` k ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) ) |
| 46 |
45
|
rexlimdva |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) ) |
| 47 |
13 46
|
sylbid |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) ) |
| 48 |
47
|
imp |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) |
| 49 |
48
|
imp |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) |
| 50 |
49
|
exlimdv |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) |
| 51 |
50
|
expimpd |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " K ) e. D ) ) |
| 52 |
7 51
|
syl5 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( F e. ( G GraphIso H ) -> ( F " K ) e. D ) ) |
| 53 |
52
|
ex |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E -> ( F e. ( G GraphIso H ) -> ( F " K ) e. D ) ) ) |
| 54 |
53
|
impcomd |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( F e. ( G GraphIso H ) /\ K e. E ) -> ( F " K ) e. D ) ) |
| 55 |
54
|
imp |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( F e. ( G GraphIso H ) /\ K e. E ) ) -> ( F " K ) e. D ) |