Metamath Proof Explorer


Theorem uhgrimedgi

Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses uhgrimedgi.e
|- E = ( Edg ` G )
uhgrimedgi.d
|- D = ( Edg ` H )
Assertion uhgrimedgi
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( F e. ( G GraphIso H ) /\ K e. E ) ) -> ( F " K ) e. D )

Proof

Step Hyp Ref Expression
1 uhgrimedgi.e
 |-  E = ( Edg ` G )
2 uhgrimedgi.d
 |-  D = ( Edg ` H )
3 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
4 eqid
 |-  ( Vtx ` H ) = ( Vtx ` H )
5 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
6 eqid
 |-  ( iEdg ` H ) = ( iEdg ` H )
7 3 4 5 6 grimprop
 |-  ( F e. ( G GraphIso H ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) )
8 1 eleq2i
 |-  ( K e. E <-> K e. ( Edg ` G ) )
9 5 uhgrfun
 |-  ( G e. UHGraph -> Fun ( iEdg ` G ) )
10 5 edgiedgb
 |-  ( Fun ( iEdg ` G ) -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) )
11 9 10 syl
 |-  ( G e. UHGraph -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) )
12 8 11 bitrid
 |-  ( G e. UHGraph -> ( K e. E <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) )
13 12 adantr
 |-  ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) )
14 simplr
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> k e. dom ( iEdg ` G ) )
15 2fveq3
 |-  ( i = k -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) )
16 fveq2
 |-  ( i = k -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` k ) )
17 16 imaeq2d
 |-  ( i = k -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` k ) ) )
18 15 17 eqeq12d
 |-  ( i = k -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) )
19 18 rspcv
 |-  ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) )
20 14 19 syl
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) )
21 6 uhgrfun
 |-  ( H e. UHGraph -> Fun ( iEdg ` H ) )
22 21 ad3antlr
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> Fun ( iEdg ` H ) )
23 f1of
 |-  ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) )
24 23 adantl
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) )
25 14 adantr
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> k e. dom ( iEdg ` G ) )
26 24 25 ffvelcdmd
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( j ` k ) e. dom ( iEdg ` H ) )
27 6 iedgedg
 |-  ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) )
28 22 26 27 syl2an2r
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) )
29 28 2 eleqtrrdi
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. D )
30 eleq1
 |-  ( ( F " ( ( iEdg ` G ) ` k ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) )
31 30 eqcoms
 |-  ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) )
32 29 31 syl5ibrcom
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) )
33 32 ex
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) )
34 20 33 syl5d
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) )
35 34 impd
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) )
36 35 ex
 |-  ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) )
37 36 adantr
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) )
38 37 3imp
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D )
39 imaeq2
 |-  ( K = ( ( iEdg ` G ) ` k ) -> ( F " K ) = ( F " ( ( iEdg ` G ) ` k ) ) )
40 39 eleq1d
 |-  ( K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) )
41 40 adantl
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) )
42 41 3ad2ant1
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) )
43 38 42 mpbird
 |-  ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " K ) e. D )
44 43 3exp
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) )
45 44 ex
 |-  ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( K = ( ( iEdg ` G ) ` k ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) )
46 45 rexlimdva
 |-  ( ( G e. UHGraph /\ H e. UHGraph ) -> ( E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) )
47 13 46 sylbid
 |-  ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) )
48 47 imp
 |-  ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) )
49 48 imp
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) )
50 49 exlimdv
 |-  ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) )
51 50 expimpd
 |-  ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " K ) e. D ) )
52 7 51 syl5
 |-  ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( F e. ( G GraphIso H ) -> ( F " K ) e. D ) )
53 52 ex
 |-  ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E -> ( F e. ( G GraphIso H ) -> ( F " K ) e. D ) ) )
54 53 impcomd
 |-  ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( F e. ( G GraphIso H ) /\ K e. E ) -> ( F " K ) e. D ) )
55 54 imp
 |-  ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( F e. ( G GraphIso H ) /\ K e. E ) ) -> ( F " K ) e. D )