| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrimedgi.e |
|- E = ( Edg ` G ) |
| 2 |
|
uhgrimedgi.d |
|- D = ( Edg ` H ) |
| 3 |
|
simp1 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 4 |
|
simp2 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> F e. ( G GraphIso H ) ) |
| 5 |
4
|
anim1i |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ K e. E ) -> ( F e. ( G GraphIso H ) /\ K e. E ) ) |
| 6 |
1 2
|
uhgrimedgi |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( F e. ( G GraphIso H ) /\ K e. E ) ) -> ( F " K ) e. D ) |
| 7 |
3 5 6
|
syl2an2r |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ K e. E ) -> ( F " K ) e. D ) |
| 8 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 9 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 10 |
8 9
|
grimf1o |
|- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 11 |
|
f1of1 |
|- ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 12 |
10 11
|
syl |
|- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 13 |
12
|
3ad2ant2 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 14 |
|
simp3 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> K C_ ( Vtx ` G ) ) |
| 15 |
13 14
|
jca |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ K C_ ( Vtx ` G ) ) ) |
| 16 |
15
|
adantr |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ K C_ ( Vtx ` G ) ) ) |
| 17 |
|
f1imacnv |
|- ( ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ K C_ ( Vtx ` G ) ) -> ( `' F " ( F " K ) ) = K ) |
| 18 |
16 17
|
syl |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( `' F " ( F " K ) ) = K ) |
| 19 |
|
pm3.22 |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( H e. UHGraph /\ G e. UHGraph ) ) |
| 20 |
19
|
3ad2ant1 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( H e. UHGraph /\ G e. UHGraph ) ) |
| 21 |
|
simpl |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> G e. UHGraph ) |
| 22 |
21
|
anim1i |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) -> ( G e. UHGraph /\ F e. ( G GraphIso H ) ) ) |
| 23 |
22
|
3adant3 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( G e. UHGraph /\ F e. ( G GraphIso H ) ) ) |
| 24 |
|
grimcnv |
|- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> `' F e. ( H GraphIso G ) ) ) |
| 25 |
24
|
imp |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) ) -> `' F e. ( H GraphIso G ) ) |
| 26 |
23 25
|
syl |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> `' F e. ( H GraphIso G ) ) |
| 27 |
26
|
anim1i |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( `' F e. ( H GraphIso G ) /\ ( F " K ) e. D ) ) |
| 28 |
2 1
|
uhgrimedgi |
|- ( ( ( H e. UHGraph /\ G e. UHGraph ) /\ ( `' F e. ( H GraphIso G ) /\ ( F " K ) e. D ) ) -> ( `' F " ( F " K ) ) e. E ) |
| 29 |
20 27 28
|
syl2an2r |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> ( `' F " ( F " K ) ) e. E ) |
| 30 |
18 29
|
eqeltrrd |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) /\ ( F " K ) e. D ) -> K e. E ) |
| 31 |
7 30
|
impbida |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ K C_ ( Vtx ` G ) ) -> ( K e. E <-> ( F " K ) e. D ) ) |