| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrimedgi.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 2 |
|
uhgrimedgi.d |
⊢ 𝐷 = ( Edg ‘ 𝐻 ) |
| 3 |
|
simp1 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 4 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 5 |
4
|
anim1i |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ 𝐾 ∈ 𝐸 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ∈ 𝐸 ) ) |
| 6 |
1 2
|
uhgrimedgi |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ∈ 𝐸 ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) |
| 7 |
3 5 6
|
syl2an2r |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ 𝐾 ∈ 𝐸 ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) |
| 8 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 9 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 10 |
8 9
|
grimf1o |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 11 |
|
f1of1 |
⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 13 |
12
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 14 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) |
| 15 |
13 14
|
jca |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 17 |
|
f1imacnv |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) = 𝐾 ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) = 𝐾 ) |
| 19 |
|
pm3.22 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) |
| 20 |
19
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) |
| 21 |
|
simpl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ∈ UHGraph ) |
| 22 |
21
|
anim1i |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
| 23 |
22
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
| 24 |
|
grimcnv |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
| 26 |
23 25
|
syl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
| 27 |
26
|
anim1i |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| 28 |
2 1
|
uhgrimedgi |
⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ ( ◡ 𝐹 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) ∈ 𝐸 ) |
| 29 |
20 27 28
|
syl2an2r |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐾 ) ) ∈ 𝐸 ) |
| 30 |
18 29
|
eqeltrrd |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) → 𝐾 ∈ 𝐸 ) |
| 31 |
7 30
|
impbida |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐾 ∈ 𝐸 ↔ ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |