| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrimedgi.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 2 |
|
uhgrimedgi.d |
⊢ 𝐷 = ( Edg ‘ 𝐻 ) |
| 3 |
|
uhgrimprop.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 4 |
|
uhgrimprop.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 5 |
3 4
|
grimf1o |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 7 |
|
3simpa |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 9 |
|
prssi |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ⊆ 𝑉 ) |
| 10 |
9 3
|
sseqtrdi |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 11 |
1 2
|
uhgrimedg |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ { 𝑥 , 𝑦 } ⊆ ( Vtx ‘ 𝐺 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) ) |
| 12 |
7 8 10 11
|
syl2an3an |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) ) |
| 13 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) |
| 14 |
5 13
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 Fn 𝑉 ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 Fn 𝑉 ) |
| 16 |
15
|
anim1i |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 17 |
|
3anass |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 18 |
16 17
|
sylibr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 19 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ) |
| 21 |
20
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
| 22 |
12 21
|
bitrd |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
| 23 |
22
|
ralrimivva |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
| 24 |
6 23
|
jca |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) |