Metamath Proof Explorer


Theorem isuspgrim0lem

Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025)

Ref Expression
Hypotheses isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
isuspgrim0lem.i 𝐼 = ( iEdg ‘ 𝐺 )
isuspgrim0lem.j 𝐽 = ( iEdg ‘ 𝐻 )
isuspgrim0lem.m 𝑀 = ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) )
isuspgrim0lem.n 𝑁 = ( 𝑥 ∈ dom 𝐼 ↦ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) )
Assertion isuspgrim0lem ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → ( 𝑁 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁𝑖 ) ) = ( 𝐹 “ ( 𝐼𝑖 ) ) ) )

Proof

Step Hyp Ref Expression
1 isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
3 isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
4 isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
5 isuspgrim0lem.i 𝐼 = ( iEdg ‘ 𝐺 )
6 isuspgrim0lem.j 𝐽 = ( iEdg ‘ 𝐻 )
7 isuspgrim0lem.m 𝑀 = ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) )
8 isuspgrim0lem.n 𝑁 = ( 𝑥 ∈ dom 𝐼 ↦ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) )
9 6 uspgrf1oedg ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
10 9 3ad2ant2 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
11 10 ad2antrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
12 f1of ( 𝑀 : 𝐸1-1-onto𝐷𝑀 : 𝐸𝐷 )
13 12 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝑀 : 𝐸𝐷 )
14 13 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑀 : 𝐸𝐷 )
15 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
16 5 uhgrfun ( 𝐺 ∈ UHGraph → Fun 𝐼 )
17 15 16 syl ( 𝐺 ∈ USPGraph → Fun 𝐼 )
18 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
19 5 eqcomi ( iEdg ‘ 𝐺 ) = 𝐼
20 19 rneqi ran ( iEdg ‘ 𝐺 ) = ran 𝐼
21 3 18 20 3eqtri 𝐸 = ran 𝐼
22 feq3 ( 𝐸 = ran 𝐼 → ( 𝐼 : dom 𝐼𝐸𝐼 : dom 𝐼 ⟶ ran 𝐼 ) )
23 21 22 ax-mp ( 𝐼 : dom 𝐼𝐸𝐼 : dom 𝐼 ⟶ ran 𝐼 )
24 fdmrn ( Fun 𝐼𝐼 : dom 𝐼 ⟶ ran 𝐼 )
25 23 24 bitr4i ( 𝐼 : dom 𝐼𝐸 ↔ Fun 𝐼 )
26 17 25 sylibr ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼𝐸 )
27 26 3ad2ant1 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → 𝐼 : dom 𝐼𝐸 )
28 27 ad2antrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝐼 : dom 𝐼𝐸 )
29 28 ffvelcdmda ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼𝑥 ) ∈ 𝐸 )
30 14 29 ffvelcdmd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∈ 𝐷 )
31 30 4 eleqtrdi ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) )
32 f1ocnvdm ( ( 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ∈ dom 𝐽 )
33 11 31 32 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ∈ dom 𝐽 )
34 33 ralrimiva ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → ∀ 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ∈ dom 𝐽 )
35 2fveq3 ( 𝑥 = ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) → ( 𝑀 ‘ ( 𝐼𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ) ) )
36 35 eqeq2d ( 𝑥 = ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) → ( ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ↔ ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ) ) ) )
37 5 uspgrf1oedg ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) )
38 37 3ad2ant1 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) )
39 38 ad2antrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) )
40 f1oeq2 ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝑀 : 𝐸1-1-onto𝐷𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto𝐷 ) )
41 3 40 ax-mp ( 𝑀 : 𝐸1-1-onto𝐷𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto𝐷 )
42 41 biimpi ( 𝑀 : 𝐸1-1-onto𝐷𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto𝐷 )
43 42 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto𝐷 )
44 f1oeq3 ( 𝐷 = ( Edg ‘ 𝐻 ) → ( 𝐽 : dom 𝐽1-1-onto𝐷𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) ) )
45 4 44 ax-mp ( 𝐽 : dom 𝐽1-1-onto𝐷𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
46 11 45 sylibr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝐽 : dom 𝐽1-1-onto𝐷 )
47 f1of ( 𝐽 : dom 𝐽1-1-onto𝐷𝐽 : dom 𝐽𝐷 )
48 46 47 syl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝐽 : dom 𝐽𝐷 )
49 48 ffvelcdmda ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐽𝑖 ) ∈ 𝐷 )
50 f1ocnvdm ( ( 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto𝐷 ∧ ( 𝐽𝑖 ) ∈ 𝐷 ) → ( 𝑀 ‘ ( 𝐽𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) )
51 43 49 50 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( 𝐽𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) )
52 f1ocnvdm ( ( 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) ∧ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ∈ dom 𝐼 )
53 39 51 52 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ∈ dom 𝐼 )
54 simpll1 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝐺 ∈ USPGraph )
55 54 37 syl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) )
56 simpr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝑀 : 𝐸1-1-onto𝐷 )
57 f1ocnvdm ( ( 𝑀 : 𝐸1-1-onto𝐷 ∧ ( 𝐽𝑖 ) ∈ 𝐷 ) → ( 𝑀 ‘ ( 𝐽𝑖 ) ) ∈ 𝐸 )
58 56 49 57 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( 𝐽𝑖 ) ) ∈ 𝐸 )
59 58 3 eleqtrdi ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( 𝐽𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) )
60 f1ocnvfv2 ( ( 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) ∧ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐽𝑖 ) ) )
61 55 59 60 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐽𝑖 ) ) )
62 61 fveq2d ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ) ) = ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) )
63 f1ocnvfv2 ( ( 𝑀 : 𝐸1-1-onto𝐷 ∧ ( 𝐽𝑖 ) ∈ 𝐷 ) → ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) = ( 𝐽𝑖 ) )
64 56 49 63 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) = ( 𝐽𝑖 ) )
65 62 64 eqtr2d ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑀 ‘ ( 𝐽𝑖 ) ) ) ) ) )
66 36 53 65 rspcedvdw ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃ 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) )
67 eqtr2 ( ( ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∧ ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐼𝑥 ) ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) )
68 f1of1 ( 𝑀 : 𝐸1-1-onto𝐷𝑀 : 𝐸1-1𝐷 )
69 68 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝑀 : 𝐸1-1𝐷 )
70 69 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝑀 : 𝐸1-1𝐷 )
71 5 iedgedg ( ( Fun 𝐼𝑥 ∈ dom 𝐼 ) → ( 𝐼𝑥 ) ∈ ( Edg ‘ 𝐺 ) )
72 17 71 sylan ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼𝑥 ) ∈ ( Edg ‘ 𝐺 ) )
73 72 3 eleqtrrdi ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼𝑥 ) ∈ 𝐸 )
74 73 ex ( 𝐺 ∈ USPGraph → ( 𝑥 ∈ dom 𝐼 → ( 𝐼𝑥 ) ∈ 𝐸 ) )
75 5 iedgedg ( ( Fun 𝐼𝑦 ∈ dom 𝐼 ) → ( 𝐼𝑦 ) ∈ ( Edg ‘ 𝐺 ) )
76 17 75 sylan ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼𝑦 ) ∈ ( Edg ‘ 𝐺 ) )
77 76 3 eleqtrrdi ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼𝑦 ) ∈ 𝐸 )
78 77 ex ( 𝐺 ∈ USPGraph → ( 𝑦 ∈ dom 𝐼 → ( 𝐼𝑦 ) ∈ 𝐸 ) )
79 74 78 anim12d ( 𝐺 ∈ USPGraph → ( ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) → ( ( 𝐼𝑥 ) ∈ 𝐸 ∧ ( 𝐼𝑦 ) ∈ 𝐸 ) ) )
80 79 3ad2ant1 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → ( ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) → ( ( 𝐼𝑥 ) ∈ 𝐸 ∧ ( 𝐼𝑦 ) ∈ 𝐸 ) ) )
81 80 ad3antrrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) → ( ( 𝐼𝑥 ) ∈ 𝐸 ∧ ( 𝐼𝑦 ) ∈ 𝐸 ) ) )
82 81 imp ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼𝑥 ) ∈ 𝐸 ∧ ( 𝐼𝑦 ) ∈ 𝐸 ) )
83 f1fveq ( ( 𝑀 : 𝐸1-1𝐷 ∧ ( ( 𝐼𝑥 ) ∈ 𝐸 ∧ ( 𝐼𝑦 ) ∈ 𝐸 ) ) → ( ( 𝑀 ‘ ( 𝐼𝑥 ) ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) ↔ ( 𝐼𝑥 ) = ( 𝐼𝑦 ) ) )
84 70 82 83 syl2an2r ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) ) → ( ( 𝑀 ‘ ( 𝐼𝑥 ) ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) ↔ ( 𝐼𝑥 ) = ( 𝐼𝑦 ) ) )
85 f1of1 ( 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼1-1→ ( Edg ‘ 𝐺 ) )
86 37 85 syl ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼1-1→ ( Edg ‘ 𝐺 ) )
87 86 3ad2ant1 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → 𝐼 : dom 𝐼1-1→ ( Edg ‘ 𝐺 ) )
88 87 ad3antrrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐼 : dom 𝐼1-1→ ( Edg ‘ 𝐺 ) )
89 f1veqaeq ( ( 𝐼 : dom 𝐼1-1→ ( Edg ‘ 𝐺 ) ∧ ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼𝑥 ) = ( 𝐼𝑦 ) → 𝑥 = 𝑦 ) )
90 88 89 sylan ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼𝑥 ) = ( 𝐼𝑦 ) → 𝑥 = 𝑦 ) )
91 84 90 sylbid ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) ) → ( ( 𝑀 ‘ ( 𝐼𝑥 ) ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) → 𝑥 = 𝑦 ) )
92 67 91 syl5 ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ) ) → ( ( ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∧ ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) ) → 𝑥 = 𝑦 ) )
93 92 ralrimivva ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∀ 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ( ( ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∧ ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) ) → 𝑥 = 𝑦 ) )
94 2fveq3 ( 𝑥 = 𝑦 → ( 𝑀 ‘ ( 𝐼𝑥 ) ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) )
95 94 eqeq2d ( 𝑥 = 𝑦 → ( ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ↔ ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) ) )
96 95 reu4 ( ∃! 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼 ( ( ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∧ ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑦 ) ) ) → 𝑥 = 𝑦 ) ) )
97 66 93 96 sylanbrc ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) )
98 10 ad3antrrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
99 13 ad2antrr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑀 : 𝐸𝐷 )
100 27 ad3antrrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐼 : dom 𝐼𝐸 )
101 100 ffvelcdmda ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼𝑥 ) ∈ 𝐸 )
102 99 101 ffvelcdmd ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∈ 𝐷 )
103 102 4 eleqtrdi ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) )
104 f1ocnvfv2 ( ( 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) )
105 98 103 104 syl2an2r ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) )
106 105 eqeq2d ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐽𝑖 ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) ↔ ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) )
107 106 reubidva ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ∃! 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) )
108 97 107 mpbird ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) )
109 11 ad2antrr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) )
110 f1of1 ( 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) → 𝐽 : dom 𝐽1-1→ ( Edg ‘ 𝐻 ) )
111 109 110 syl ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 : dom 𝐽1-1→ ( Edg ‘ 𝐻 ) )
112 simplr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑖 ∈ dom 𝐽 )
113 33 adantlr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ∈ dom 𝐽 )
114 f1fveq ( ( 𝐽 : dom 𝐽1-1→ ( Edg ‘ 𝐻 ) ∧ ( 𝑖 ∈ dom 𝐽 ∧ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ∈ dom 𝐽 ) ) → ( ( 𝐽𝑖 ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) ↔ 𝑖 = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) )
115 114 bicomd ( ( 𝐽 : dom 𝐽1-1→ ( Edg ‘ 𝐻 ) ∧ ( 𝑖 ∈ dom 𝐽 ∧ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ∈ dom 𝐽 ) ) → ( 𝑖 = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ↔ ( 𝐽𝑖 ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) ) )
116 111 112 113 115 syl12anc ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑖 = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ↔ ( 𝐽𝑖 ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) ) )
117 116 reubidva ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐽𝑖 ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) ) )
118 108 117 mpbird ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) )
119 118 ralrimiva ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → ∀ 𝑖 ∈ dom 𝐽 ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) )
120 8 f1ompt ( 𝑁 : dom 𝐼1-1-onto→ dom 𝐽 ↔ ( ∀ 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ∈ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐽 ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) ) )
121 34 119 120 sylanbrc ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → 𝑁 : dom 𝐼1-1-onto→ dom 𝐽 )
122 2fveq3 ( 𝑥 = 𝑖 → ( 𝑀 ‘ ( 𝐼𝑥 ) ) = ( 𝑀 ‘ ( 𝐼𝑖 ) ) )
123 122 fveq2d ( 𝑥 = 𝑖 → ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ) )
124 123 adantl ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = 𝑖 ) → ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑥 ) ) ) = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ) )
125 simpr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ dom 𝐼 )
126 fvexd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ) ∈ V )
127 8 124 125 126 fvmptd2 ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑁𝑖 ) = ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ) )
128 127 fveq2d ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑁𝑖 ) ) = ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ) ) )
129 13 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝑀 : 𝐸𝐷 )
130 28 ffvelcdmda ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼𝑖 ) ∈ 𝐸 )
131 129 130 ffvelcdmd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼𝑖 ) ) ∈ 𝐷 )
132 131 4 eleqtrdi ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) )
133 f1ocnvfv2 ( ( 𝐽 : dom 𝐽1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐼𝑖 ) ) )
134 11 132 133 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝐽 ‘ ( 𝑀 ‘ ( 𝐼𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐼𝑖 ) ) )
135 simpr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = ( 𝐼𝑖 ) ) → 𝑥 = ( 𝐼𝑖 ) )
136 135 imaeq2d ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = ( 𝐼𝑖 ) ) → ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝐼𝑖 ) ) )
137 simp3 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → 𝐹𝑋 )
138 137 ad3antrrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝐹𝑋 )
139 138 imaexd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐹 “ ( 𝐼𝑖 ) ) ∈ V )
140 7 136 130 139 fvmptd2 ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼𝑖 ) ) = ( 𝐹 “ ( 𝐼𝑖 ) ) )
141 128 134 140 3eqtrd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑁𝑖 ) ) = ( 𝐹 “ ( 𝐼𝑖 ) ) )
142 141 ralrimiva ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁𝑖 ) ) = ( 𝐹 “ ( 𝐼𝑖 ) ) )
143 121 142 jca ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑀 : 𝐸1-1-onto𝐷 ) → ( 𝑁 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁𝑖 ) ) = ( 𝐹 “ ( 𝐼𝑖 ) ) ) )