| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isusgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
isusgrim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 3 |
|
isusgrim.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
|
isusgrim.d |
⊢ 𝐷 = ( Edg ‘ 𝐻 ) |
| 5 |
|
isuspgrim0lem.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 6 |
|
isuspgrim0lem.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 7 |
|
isuspgrim0lem.m |
⊢ 𝑀 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) |
| 8 |
|
isuspgrim0lem.n |
⊢ 𝑁 = ( 𝑥 ∈ dom 𝐼 ↦ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 9 |
6
|
uspgrf1oedg |
⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 12 |
|
f1of |
⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 15 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 16 |
5
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 17 |
15 16
|
syl |
⊢ ( 𝐺 ∈ USPGraph → Fun 𝐼 ) |
| 18 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
| 19 |
5
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 20 |
19
|
rneqi |
⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 21 |
3 18 20
|
3eqtri |
⊢ 𝐸 = ran 𝐼 |
| 22 |
|
feq3 |
⊢ ( 𝐸 = ran 𝐼 → ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ran 𝐼 ) ) |
| 23 |
21 22
|
ax-mp |
⊢ ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ran 𝐼 ) |
| 24 |
|
fdmrn |
⊢ ( Fun 𝐼 ↔ 𝐼 : dom 𝐼 ⟶ ran 𝐼 ) |
| 25 |
23 24
|
bitr4i |
⊢ ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ Fun 𝐼 ) |
| 26 |
17 25
|
sylibr |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 29 |
28
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) |
| 30 |
14 29
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ 𝐷 ) |
| 31 |
30 4
|
eleqtrdi |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 32 |
|
f1ocnvdm |
⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) |
| 33 |
11 31 32
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) |
| 34 |
33
|
ralrimiva |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ∀ 𝑥 ∈ dom 𝐼 ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) |
| 35 |
|
2fveq3 |
⊢ ( 𝑥 = ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) ) |
| 36 |
35
|
eqeq2d |
⊢ ( 𝑥 = ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) → ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) ) ) |
| 37 |
5
|
uspgrf1oedg |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 38 |
37
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 40 |
|
f1oeq2 |
⊢ ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ↔ 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) ) |
| 41 |
3 40
|
ax-mp |
⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ↔ 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) |
| 42 |
41
|
biimpi |
⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 → 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) |
| 43 |
42
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) |
| 44 |
|
f1oeq3 |
⊢ ( 𝐷 = ( Edg ‘ 𝐻 ) → ( 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 ↔ 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) ) |
| 45 |
4 44
|
ax-mp |
⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 ↔ 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 46 |
11 45
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 ) |
| 47 |
|
f1of |
⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 → 𝐽 : dom 𝐽 ⟶ 𝐷 ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐽 : dom 𝐽 ⟶ 𝐷 ) |
| 49 |
48
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) |
| 50 |
|
f1ocnvdm |
⊢ ( ( 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ∧ ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 51 |
43 49 50
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 52 |
|
f1ocnvdm |
⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) → ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ∈ dom 𝐼 ) |
| 53 |
39 51 52
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ∈ dom 𝐼 ) |
| 54 |
|
simpll1 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐺 ∈ USPGraph ) |
| 55 |
54 37
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 56 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) |
| 57 |
|
f1ocnvdm |
⊢ ( ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ∧ ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ 𝐸 ) |
| 58 |
56 49 57
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ 𝐸 ) |
| 59 |
58 3
|
eleqtrdi |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 60 |
|
f1ocnvfv2 |
⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) = ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) |
| 61 |
55 59 60
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) = ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) |
| 62 |
61
|
fveq2d |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) |
| 63 |
|
f1ocnvfv2 |
⊢ ( ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ∧ ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) = ( 𝐽 ‘ 𝑖 ) ) |
| 64 |
56 49 63
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) = ( 𝐽 ‘ 𝑖 ) ) |
| 65 |
62 64
|
eqtr2d |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) ) |
| 66 |
36 53 65
|
rspcedvdw |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃ 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 67 |
|
eqtr2 |
⊢ ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) |
| 68 |
|
f1of1 |
⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 → 𝑀 : 𝐸 –1-1→ 𝐷 ) |
| 69 |
68
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : 𝐸 –1-1→ 𝐷 ) |
| 70 |
69
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝑀 : 𝐸 –1-1→ 𝐷 ) |
| 71 |
5
|
iedgedg |
⊢ ( ( Fun 𝐼 ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 72 |
17 71
|
sylan |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 73 |
72 3
|
eleqtrrdi |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) |
| 74 |
73
|
ex |
⊢ ( 𝐺 ∈ USPGraph → ( 𝑥 ∈ dom 𝐼 → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) ) |
| 75 |
5
|
iedgedg |
⊢ ( ( Fun 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑦 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 76 |
17 75
|
sylan |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑦 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 77 |
76 3
|
eleqtrrdi |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) |
| 78 |
77
|
ex |
⊢ ( 𝐺 ∈ USPGraph → ( 𝑦 ∈ dom 𝐼 → ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) |
| 79 |
74 78
|
anim12d |
⊢ ( 𝐺 ∈ USPGraph → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) ) |
| 80 |
79
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) ) |
| 81 |
80
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) |
| 83 |
|
f1fveq |
⊢ ( ( 𝑀 : 𝐸 –1-1→ 𝐷 ∧ ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) → ( ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ↔ ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ) ) |
| 84 |
70 82 83
|
syl2an2r |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ↔ ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ) ) |
| 85 |
|
f1of1 |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 86 |
37 85
|
syl |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 87 |
86
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 88 |
87
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 89 |
|
f1veqaeq |
⊢ ( ( 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 90 |
88 89
|
sylan |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 91 |
84 90
|
sylbid |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 92 |
67 91
|
syl5 |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
| 93 |
92
|
ralrimivva |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
| 94 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) |
| 95 |
94
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 96 |
95
|
reu4 |
⊢ ( ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 97 |
66 93 96
|
sylanbrc |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 98 |
10
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 99 |
13
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 100 |
27
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 101 |
100
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) |
| 102 |
99 101
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ 𝐷 ) |
| 103 |
102 4
|
eleqtrdi |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 104 |
|
f1ocnvfv2 |
⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 105 |
98 103 104
|
syl2an2r |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 106 |
105
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 107 |
106
|
reubidva |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 108 |
97 107
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) |
| 109 |
11
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 110 |
|
f1of1 |
⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) |
| 111 |
109 110
|
syl |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) |
| 112 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑖 ∈ dom 𝐽 ) |
| 113 |
33
|
adantlr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) |
| 114 |
|
f1fveq |
⊢ ( ( 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ∧ ( 𝑖 ∈ dom 𝐽 ∧ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) ) → ( ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ↔ 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) |
| 115 |
114
|
bicomd |
⊢ ( ( 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ∧ ( 𝑖 ∈ dom 𝐽 ∧ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) ) → ( 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) ) |
| 116 |
111 112 113 115
|
syl12anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) ) |
| 117 |
116
|
reubidva |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) ) |
| 118 |
108 117
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 119 |
118
|
ralrimiva |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ∀ 𝑖 ∈ dom 𝐽 ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 120 |
8
|
f1ompt |
⊢ ( 𝑁 : dom 𝐼 –1-1-onto→ dom 𝐽 ↔ ( ∀ 𝑥 ∈ dom 𝐼 ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐽 ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) |
| 121 |
34 119 120
|
sylanbrc |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑁 : dom 𝐼 –1-1-onto→ dom 𝐽 ) |
| 122 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑖 → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 123 |
122
|
fveq2d |
⊢ ( 𝑥 = 𝑖 → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 124 |
123
|
adantl |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = 𝑖 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 125 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ dom 𝐼 ) |
| 126 |
|
fvexd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ∈ V ) |
| 127 |
8 124 125 126
|
fvmptd2 |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑁 ‘ 𝑖 ) = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 128 |
127
|
fveq2d |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) ) |
| 129 |
13
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 130 |
28
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) ∈ 𝐸 ) |
| 131 |
129 130
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ 𝐷 ) |
| 132 |
131 4
|
eleqtrdi |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 133 |
|
f1ocnvfv2 |
⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 134 |
11 132 133
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 135 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = ( 𝐼 ‘ 𝑖 ) ) → 𝑥 = ( 𝐼 ‘ 𝑖 ) ) |
| 136 |
135
|
imaeq2d |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = ( 𝐼 ‘ 𝑖 ) ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 137 |
|
simp3 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) |
| 138 |
137
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝐹 ∈ 𝑋 ) |
| 139 |
138
|
imaexd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ∈ V ) |
| 140 |
7 136 130 139
|
fvmptd2 |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 141 |
128 134 140
|
3eqtrd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 142 |
141
|
ralrimiva |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 143 |
121 142
|
jca |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ( 𝑁 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) ) |