Metamath Proof Explorer


Theorem isuspgrim0

Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025)

Ref Expression
Hypotheses isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
Assertion isuspgrim0 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
3 isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
4 isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
5 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
6 eqid ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 )
7 1 2 5 6 isgrim ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) )
8 3 eleq2i ( 𝑒𝐸𝑒 ∈ ( Edg ‘ 𝐺 ) )
9 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
10 5 uhgredgiedgb ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
11 9 10 syl ( 𝐺 ∈ USPGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
12 8 11 bitrid ( 𝐺 ∈ USPGraph → ( 𝑒𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
13 12 3ad2ant1 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → ( 𝑒𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
14 13 ad2antrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑒𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
15 14 biimpa ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒𝐸 ) → ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) )
16 2fveq3 ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) )
17 fveq2 ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) )
18 17 imaeq2d ( 𝑖 = 𝑘 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
19 16 18 eqeq12d ( 𝑖 = 𝑘 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) )
20 19 rspcv ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) )
21 20 adantl ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) )
22 uspgruhgr ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph )
23 6 uhgrfun ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) )
24 22 23 syl ( 𝐻 ∈ USPGraph → Fun ( iEdg ‘ 𝐻 ) )
25 24 3ad2ant2 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → Fun ( iEdg ‘ 𝐻 ) )
26 25 ad3antrrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → Fun ( iEdg ‘ 𝐻 ) )
27 f1of ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
28 27 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
29 28 ffvelcdmda ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) )
30 6 iedgedg ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) )
31 26 29 30 syl2anc ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) )
32 4 eleq2i ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ 𝐷 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) )
33 31 32 sylibr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ 𝐷 )
34 eleq1 ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) )
35 33 34 syl5ibcom ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) )
36 21 35 syld ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) )
37 36 ex ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) )
38 37 com23 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) )
39 38 impr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) )
40 39 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒𝐸 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) )
41 40 imp ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒𝐸 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 )
42 imaeq2 ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹𝑒 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) )
43 42 eleq1d ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹𝑒 ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) )
44 41 43 syl5ibrcom ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒𝐸 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹𝑒 ) ∈ 𝐷 ) )
45 44 rexlimdva ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒𝐸 ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹𝑒 ) ∈ 𝐷 ) )
46 15 45 mpd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒𝐸 ) → ( 𝐹𝑒 ) ∈ 𝐷 )
47 46 ralrimiva ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∀ 𝑒𝐸 ( 𝐹𝑒 ) ∈ 𝐷 )
48 4 eleq2i ( 𝑑𝐷𝑑 ∈ ( Edg ‘ 𝐻 ) )
49 6 uhgredgiedgb ( 𝐻 ∈ UHGraph → ( 𝑑 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
50 22 49 syl ( 𝐻 ∈ USPGraph → ( 𝑑 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
51 48 50 bitrid ( 𝐻 ∈ USPGraph → ( 𝑑𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
52 51 3ad2ant2 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → ( 𝑑𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
53 52 ad2antrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑑𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) )
54 simprl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) )
55 f1ocnvdm ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) )
56 54 55 sylan ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) )
57 2fveq3 ( 𝑖 = ( 𝑗𝑘 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) )
58 fveq2 ( 𝑖 = ( 𝑗𝑘 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) )
59 58 imaeq2d ( 𝑖 = ( 𝑗𝑘 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) )
60 57 59 eqeq12d ( 𝑖 = ( 𝑗𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
61 60 rspccv ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
62 61 adantl ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
63 62 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
64 63 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
65 f1ocnvfv2 ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( 𝑗𝑘 ) ) = 𝑘 )
66 54 65 sylan ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( 𝑗𝑘 ) ) = 𝑘 )
67 66 fveqeq2d ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
68 eqeq2 ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
69 68 adantl ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) )
70 simpll1 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝐺 ∈ USPGraph )
71 3 5 uspgriedgedg ( ( 𝐺 ∈ USPGraph ∧ ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ∃! 𝑒𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) )
72 70 56 71 syl2an2r ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) )
73 eqcom ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) = 𝑒𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) )
74 73 reubii ( ∃! 𝑒𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) = 𝑒 ↔ ∃! 𝑒𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) )
75 72 74 sylibr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) = 𝑒 )
76 f1of1 ( 𝐹 : 𝑉1-1-onto𝑊𝐹 : 𝑉1-1𝑊 )
77 76 ad4antlr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → 𝐹 : 𝑉1-1𝑊 )
78 uspgrupgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
79 78 3ad2ant1 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → 𝐺 ∈ UPGraph )
80 79 ad3antrrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → 𝐺 ∈ UPGraph )
81 80 56 jca ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐺 ∈ UPGraph ∧ ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
82 81 adantr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → ( 𝐺 ∈ UPGraph ∧ ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
83 1 5 upgrss ( ( 𝐺 ∈ UPGraph ∧ ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ⊆ 𝑉 )
84 82 83 syl ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ⊆ 𝑉 )
85 8 biimpi ( 𝑒𝐸𝑒 ∈ ( Edg ‘ 𝐺 ) )
86 edgupgr ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) )
87 80 85 86 syl2an ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) )
88 87 simp1d ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) )
89 88 elpwid ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) )
90 89 1 sseqtrrdi ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → 𝑒𝑉 )
91 f1imaeq ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ⊆ 𝑉𝑒𝑉 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) = 𝑒 ) )
92 77 84 90 91 syl12anc ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒𝐸 ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) = 𝑒 ) )
93 92 reubidva ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃! 𝑒𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) ↔ ∃! 𝑒𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) = 𝑒 ) )
94 75 93 mpbird ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) )
95 94 ad2antrr ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) → ∃! 𝑒𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) )
96 eqeq1 ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) → ( 𝑑 = ( 𝐹𝑒 ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) ) )
97 96 reubidv ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) → ( ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ↔ ∃! 𝑒𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) ) )
98 97 adantl ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) → ( ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ↔ ∃! 𝑒𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹𝑒 ) ) )
99 95 98 mpbird ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) )
100 99 ex ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) → ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
101 69 100 sylbid ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
102 101 ex ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
103 67 102 sylbid ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( 𝑗𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑗𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
104 64 103 syld ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑗𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
105 56 104 mpd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
106 105 rexlimdva ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
107 53 106 sylbid ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
108 107 ralrimiv ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∀ 𝑑𝐷 ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) )
109 imaeq2 ( 𝑥 = 𝑒 → ( 𝐹𝑥 ) = ( 𝐹𝑒 ) )
110 109 cbvmptv ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) = ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) )
111 110 f1ompt ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ↔ ( ∀ 𝑒𝐸 ( 𝐹𝑒 ) ∈ 𝐷 ∧ ∀ 𝑑𝐷 ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
112 47 108 111 sylanbrc ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 )
113 112 ex ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ) )
114 113 exlimdv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ) )
115 fvex ( iEdg ‘ 𝐺 ) ∈ V
116 115 dmex dom ( iEdg ‘ 𝐺 ) ∈ V
117 116 mptex ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ∈ V
118 117 a1i ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ) → ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ∈ V )
119 eqid ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) )
120 1 2 3 4 5 6 110 119 isuspgrim0lem ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ) → ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) )
121 f1oeq1 ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) )
122 fveq1 ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( 𝑗𝑖 ) = ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) )
123 122 fveqeq2d ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) )
124 123 ralbidv ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) )
125 121 124 anbi12d ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
126 118 120 125 spcedv ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) )
127 126 ex ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
128 114 127 impbid ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ) )
129 f1oeq1 ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) = ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) → ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ↔ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) )
130 110 129 mp1i ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) : 𝐸1-1-onto𝐷 ↔ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) )
131 128 130 bitrd ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) )
132 131 pm5.32da ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) )
133 7 132 bitrd ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) )