Step |
Hyp |
Ref |
Expression |
1 |
|
isusgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isusgrim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
isusgrim.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
|
isusgrim.d |
⊢ 𝐷 = ( Edg ‘ 𝐻 ) |
5 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
7 |
1 2 5 6
|
isgrim |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) ) |
8 |
3
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
9 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
10 |
5
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝐺 ∈ USPGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
12 |
8 11
|
bitrid |
⊢ ( 𝐺 ∈ USPGraph → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
15 |
14
|
biimpa |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
16 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
18 |
17
|
imaeq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( 𝑖 = 𝑘 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
20 |
19
|
rspcv |
⊢ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
22 |
|
uspgruhgr |
⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph ) |
23 |
6
|
uhgrfun |
⊢ ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝐻 ∈ USPGraph → Fun ( iEdg ‘ 𝐻 ) ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → Fun ( iEdg ‘ 𝐻 ) ) |
26 |
25
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → Fun ( iEdg ‘ 𝐻 ) ) |
27 |
|
f1of |
⊢ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
28 |
27
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
29 |
28
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
30 |
6
|
iedgedg |
⊢ ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
31 |
26 29 30
|
syl2anc |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
32 |
4
|
eleq2i |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
33 |
31 32
|
sylibr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ) |
34 |
|
eleq1 |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
35 |
33 34
|
syl5ibcom |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
36 |
21 35
|
syld |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
37 |
36
|
ex |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
38 |
37
|
com23 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
39 |
38
|
impr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
41 |
40
|
imp |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) |
42 |
|
imaeq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
43 |
42
|
eleq1d |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹 “ 𝑒 ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
44 |
41 43
|
syl5ibrcom |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
45 |
44
|
rexlimdva |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
46 |
15 45
|
mpd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
47 |
46
|
ralrimiva |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
48 |
4
|
eleq2i |
⊢ ( 𝑑 ∈ 𝐷 ↔ 𝑑 ∈ ( Edg ‘ 𝐻 ) ) |
49 |
6
|
uhgredgiedgb |
⊢ ( 𝐻 ∈ UHGraph → ( 𝑑 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
50 |
22 49
|
syl |
⊢ ( 𝐻 ∈ USPGraph → ( 𝑑 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
51 |
48 50
|
bitrid |
⊢ ( 𝐻 ∈ USPGraph → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
52 |
51
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
54 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
55 |
|
f1ocnvdm |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
56 |
54 55
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
57 |
|
2fveq3 |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
59 |
58
|
imaeq2d |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
60 |
57 59
|
eqeq12d |
⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
61 |
60
|
rspccv |
⊢ ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
62 |
61
|
adantl |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
63 |
62
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
65 |
|
f1ocnvfv2 |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
66 |
54 65
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
67 |
66
|
fveqeq2d |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
68 |
|
eqeq2 |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
69 |
68
|
adantl |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
70 |
|
simpll1 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝐺 ∈ USPGraph ) |
71 |
3 5
|
uspgriedgedg |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ∃! 𝑒 ∈ 𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
72 |
70 56 71
|
syl2an2r |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒 ∈ 𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
73 |
|
eqcom |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ↔ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
74 |
73
|
reubii |
⊢ ( ∃! 𝑒 ∈ 𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ↔ ∃! 𝑒 ∈ 𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
75 |
72 74
|
sylibr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒 ∈ 𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) |
76 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
77 |
76
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
78 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
79 |
78
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐺 ∈ UPGraph ) |
80 |
79
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → 𝐺 ∈ UPGraph ) |
81 |
80 56
|
jca |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐺 ∈ UPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
82 |
81
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝐺 ∈ UPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
83 |
1 5
|
upgrss |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
84 |
82 83
|
syl |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
85 |
8
|
biimpi |
⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
86 |
|
edgupgr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) ) |
87 |
80 85 86
|
syl2an |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) ) |
88 |
87
|
simp1d |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
89 |
88
|
elpwid |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) |
90 |
89 1
|
sseqtrrdi |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
91 |
|
f1imaeq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ∧ 𝑒 ⊆ 𝑉 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) ) |
92 |
77 84 90 91
|
syl12anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) ) |
93 |
92
|
reubidva |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) ) |
94 |
75 93
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) |
95 |
94
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) |
96 |
|
eqeq1 |
⊢ ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) ) |
97 |
96
|
reubidv |
⊢ ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) ) |
98 |
97
|
adantl |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) ) |
99 |
95 98
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
100 |
99
|
ex |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
101 |
69 100
|
sylbid |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
102 |
101
|
ex |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
103 |
67 102
|
sylbid |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
104 |
64 103
|
syld |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
105 |
56 104
|
mpd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
106 |
105
|
rexlimdva |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
107 |
53 106
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
108 |
107
|
ralrimiv |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
109 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑒 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑒 ) ) |
110 |
109
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) |
111 |
110
|
f1ompt |
⊢ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ∧ ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
112 |
47 108 111
|
sylanbrc |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |
113 |
112
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
114 |
113
|
exlimdv |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
115 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
116 |
115
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
117 |
116
|
mptex |
⊢ ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ∈ V |
118 |
117
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ∈ V ) |
119 |
|
eqid |
⊢ ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) |
120 |
1 2 3 4 5 6 110 119
|
isuspgrim0lem |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
121 |
|
f1oeq1 |
⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
122 |
|
fveq1 |
⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( 𝑗 ‘ 𝑖 ) = ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) |
123 |
122
|
fveqeq2d |
⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
124 |
123
|
ralbidv |
⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
125 |
121 124
|
anbi12d |
⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
126 |
118 120 125
|
spcedv |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
127 |
126
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
128 |
114 127
|
impbid |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
129 |
|
f1oeq1 |
⊢ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) → ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
130 |
110 129
|
mp1i |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
131 |
128 130
|
bitrd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
132 |
131
|
pm5.32da |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |
133 |
7 132
|
bitrd |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |