Step |
Hyp |
Ref |
Expression |
1 |
|
isusgrim.v |
|- V = ( Vtx ` G ) |
2 |
|
isusgrim.w |
|- W = ( Vtx ` H ) |
3 |
|
isusgrim.e |
|- E = ( Edg ` G ) |
4 |
|
isusgrim.d |
|- D = ( Edg ` H ) |
5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
6 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
7 |
1 2 5 6
|
isgrim |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( F e. ( G GraphIso H ) <-> ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) ) |
8 |
3
|
eleq2i |
|- ( e e. E <-> e e. ( Edg ` G ) ) |
9 |
|
uspgruhgr |
|- ( G e. USPGraph -> G e. UHGraph ) |
10 |
5
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( e e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
11 |
9 10
|
syl |
|- ( G e. USPGraph -> ( e e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
12 |
8 11
|
bitrid |
|- ( G e. USPGraph -> ( e e. E <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( e e. E <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
14 |
13
|
ad2antrr |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( e e. E <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
15 |
14
|
biimpa |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) |
16 |
|
2fveq3 |
|- ( i = k -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) ) |
17 |
|
fveq2 |
|- ( i = k -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` k ) ) |
18 |
17
|
imaeq2d |
|- ( i = k -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
19 |
16 18
|
eqeq12d |
|- ( i = k -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
20 |
19
|
rspcv |
|- ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
21 |
20
|
adantl |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
22 |
|
uspgruhgr |
|- ( H e. USPGraph -> H e. UHGraph ) |
23 |
6
|
uhgrfun |
|- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
24 |
22 23
|
syl |
|- ( H e. USPGraph -> Fun ( iEdg ` H ) ) |
25 |
24
|
3ad2ant2 |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> Fun ( iEdg ` H ) ) |
26 |
25
|
ad3antrrr |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> Fun ( iEdg ` H ) ) |
27 |
|
f1of |
|- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
28 |
27
|
adantl |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
29 |
28
|
ffvelcdmda |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( j ` k ) e. dom ( iEdg ` H ) ) |
30 |
6
|
iedgedg |
|- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
31 |
26 29 30
|
syl2anc |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
32 |
4
|
eleq2i |
|- ( ( ( iEdg ` H ) ` ( j ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
33 |
31 32
|
sylibr |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) |
34 |
|
eleq1 |
|- ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
35 |
33 34
|
syl5ibcom |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
36 |
21 35
|
syld |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
37 |
36
|
ex |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
38 |
37
|
com23 |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( k e. dom ( iEdg ` G ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
39 |
38
|
impr |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( k e. dom ( iEdg ` G ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
40 |
39
|
adantr |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> ( k e. dom ( iEdg ` G ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
41 |
40
|
imp |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) |
42 |
|
imaeq2 |
|- ( e = ( ( iEdg ` G ) ` k ) -> ( F " e ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
43 |
42
|
eleq1d |
|- ( e = ( ( iEdg ` G ) ` k ) -> ( ( F " e ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
44 |
41 43
|
syl5ibrcom |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) /\ k e. dom ( iEdg ` G ) ) -> ( e = ( ( iEdg ` G ) ` k ) -> ( F " e ) e. D ) ) |
45 |
44
|
rexlimdva |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> ( E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) -> ( F " e ) e. D ) ) |
46 |
15 45
|
mpd |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> ( F " e ) e. D ) |
47 |
46
|
ralrimiva |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> A. e e. E ( F " e ) e. D ) |
48 |
4
|
eleq2i |
|- ( d e. D <-> d e. ( Edg ` H ) ) |
49 |
6
|
uhgredgiedgb |
|- ( H e. UHGraph -> ( d e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
50 |
22 49
|
syl |
|- ( H e. USPGraph -> ( d e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
51 |
48 50
|
bitrid |
|- ( H e. USPGraph -> ( d e. D <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
52 |
51
|
3ad2ant2 |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( d e. D <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( d e. D <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
54 |
|
simprl |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
55 |
|
f1ocnvdm |
|- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> ( `' j ` k ) e. dom ( iEdg ` G ) ) |
56 |
54 55
|
sylan |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( `' j ` k ) e. dom ( iEdg ` G ) ) |
57 |
|
2fveq3 |
|- ( i = ( `' j ` k ) -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) ) |
58 |
|
fveq2 |
|- ( i = ( `' j ` k ) -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
59 |
58
|
imaeq2d |
|- ( i = ( `' j ` k ) -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
60 |
57 59
|
eqeq12d |
|- ( i = ( `' j ` k ) -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
61 |
60
|
rspccv |
|- ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
62 |
61
|
adantl |
|- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
63 |
62
|
adantl |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
64 |
63
|
adantr |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
65 |
|
f1ocnvfv2 |
|- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> ( j ` ( `' j ` k ) ) = k ) |
66 |
54 65
|
sylan |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( j ` ( `' j ` k ) ) = k ) |
67 |
66
|
fveqeq2d |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) <-> ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
68 |
|
eqeq2 |
|- ( ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) <-> d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
69 |
68
|
adantl |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) <-> d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
70 |
|
simpll1 |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> G e. USPGraph ) |
71 |
3 5
|
uspgriedgedg |
|- ( ( G e. USPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> E! e e. E e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
72 |
70 56 71
|
syl2an2r |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> E! e e. E e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
73 |
|
eqcom |
|- ( ( ( iEdg ` G ) ` ( `' j ` k ) ) = e <-> e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
74 |
73
|
reubii |
|- ( E! e e. E ( ( iEdg ` G ) ` ( `' j ` k ) ) = e <-> E! e e. E e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
75 |
72 74
|
sylibr |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> E! e e. E ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) |
76 |
|
f1of1 |
|- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
77 |
76
|
ad4antlr |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> F : V -1-1-> W ) |
78 |
|
uspgrupgr |
|- ( G e. USPGraph -> G e. UPGraph ) |
79 |
78
|
3ad2ant1 |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> G e. UPGraph ) |
80 |
79
|
ad3antrrr |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> G e. UPGraph ) |
81 |
80 56
|
jca |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( G e. UPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) ) |
82 |
81
|
adantr |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( G e. UPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) ) |
83 |
1 5
|
upgrss |
|- ( ( G e. UPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V ) |
84 |
82 83
|
syl |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V ) |
85 |
8
|
biimpi |
|- ( e e. E -> e e. ( Edg ` G ) ) |
86 |
|
edgupgr |
|- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) ) |
87 |
80 85 86
|
syl2an |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) ) |
88 |
87
|
simp1d |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> e e. ~P ( Vtx ` G ) ) |
89 |
88
|
elpwid |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> e C_ ( Vtx ` G ) ) |
90 |
89 1
|
sseqtrrdi |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> e C_ V ) |
91 |
|
f1imaeq |
|- ( ( F : V -1-1-> W /\ ( ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V /\ e C_ V ) ) -> ( ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) <-> ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) ) |
92 |
77 84 90 91
|
syl12anc |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) <-> ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) ) |
93 |
92
|
reubidva |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) <-> E! e e. E ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) ) |
94 |
75 93
|
mpbird |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) |
95 |
94
|
ad2antrr |
|- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) /\ d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) |
96 |
|
eqeq1 |
|- ( d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( F " e ) <-> ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) ) |
97 |
96
|
reubidv |
|- ( d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( E! e e. E d = ( F " e ) <-> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) ) |
98 |
97
|
adantl |
|- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) /\ d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( E! e e. E d = ( F " e ) <-> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) ) |
99 |
95 98
|
mpbird |
|- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) /\ d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> E! e e. E d = ( F " e ) ) |
100 |
99
|
ex |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> E! e e. E d = ( F " e ) ) ) |
101 |
69 100
|
sylbid |
|- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) |
102 |
101
|
ex |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) ) |
103 |
67 102
|
sylbid |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) ) |
104 |
64 103
|
syld |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) ) |
105 |
56 104
|
mpd |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) |
106 |
105
|
rexlimdva |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) |
107 |
53 106
|
sylbid |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( d e. D -> E! e e. E d = ( F " e ) ) ) |
108 |
107
|
ralrimiv |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> A. d e. D E! e e. E d = ( F " e ) ) |
109 |
|
imaeq2 |
|- ( x = e -> ( F " x ) = ( F " e ) ) |
110 |
109
|
cbvmptv |
|- ( x e. E |-> ( F " x ) ) = ( e e. E |-> ( F " e ) ) |
111 |
110
|
f1ompt |
|- ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D <-> ( A. e e. E ( F " e ) e. D /\ A. d e. D E! e e. E d = ( F " e ) ) ) |
112 |
47 108 111
|
sylanbrc |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) |
113 |
112
|
ex |
|- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) ) |
114 |
113
|
exlimdv |
|- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) ) |
115 |
|
fvex |
|- ( iEdg ` G ) e. _V |
116 |
115
|
dmex |
|- dom ( iEdg ` G ) e. _V |
117 |
116
|
mptex |
|- ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) e. _V |
118 |
117
|
a1i |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) -> ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) e. _V ) |
119 |
|
eqid |
|- ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) |
120 |
1 2 3 4 5 6 110 119
|
isuspgrim0lem |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) -> ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
121 |
|
f1oeq1 |
|- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
122 |
|
fveq1 |
|- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( j ` i ) = ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) |
123 |
122
|
fveqeq2d |
|- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
124 |
123
|
ralbidv |
|- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
125 |
121 124
|
anbi12d |
|- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) <-> ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
126 |
118 120 125
|
spcedv |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) -> E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
127 |
126
|
ex |
|- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D -> E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
128 |
114 127
|
impbid |
|- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) <-> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) ) |
129 |
|
f1oeq1 |
|- ( ( x e. E |-> ( F " x ) ) = ( e e. E |-> ( F " e ) ) -> ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D <-> ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) |
130 |
110 129
|
mp1i |
|- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D <-> ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) |
131 |
128 130
|
bitrd |
|- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) <-> ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) |
132 |
131
|
pm5.32da |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) <-> ( F : V -1-1-onto-> W /\ ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) ) |
133 |
7 132
|
bitrd |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( F e. ( G GraphIso H ) <-> ( F : V -1-1-onto-> W /\ ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) ) |