| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgredgiedg.e |
|- E = ( Edg ` G ) |
| 2 |
|
uspgredgiedg.i |
|- I = ( iEdg ` G ) |
| 3 |
2
|
uspgrf1oedg |
|- ( G e. USPGraph -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 4 |
|
f1of |
|- ( I : dom I -1-1-onto-> ( Edg ` G ) -> I : dom I --> ( Edg ` G ) ) |
| 5 |
3 4
|
syl |
|- ( G e. USPGraph -> I : dom I --> ( Edg ` G ) ) |
| 6 |
|
feq3 |
|- ( E = ( Edg ` G ) -> ( I : dom I --> E <-> I : dom I --> ( Edg ` G ) ) ) |
| 7 |
1 6
|
ax-mp |
|- ( I : dom I --> E <-> I : dom I --> ( Edg ` G ) ) |
| 8 |
5 7
|
sylibr |
|- ( G e. USPGraph -> I : dom I --> E ) |
| 9 |
|
fdmeu |
|- ( ( I : dom I --> E /\ X e. dom I ) -> E! k e. E ( I ` X ) = k ) |
| 10 |
8 9
|
sylan |
|- ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E ( I ` X ) = k ) |
| 11 |
|
eqcom |
|- ( k = ( I ` X ) <-> ( I ` X ) = k ) |
| 12 |
11
|
reubii |
|- ( E! k e. E k = ( I ` X ) <-> E! k e. E ( I ` X ) = k ) |
| 13 |
10 12
|
sylibr |
|- ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E k = ( I ` X ) ) |