| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrf1o.e |
|- E = ( iEdg ` G ) |
| 2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 3 |
2 1
|
uspgrf |
|- ( G e. USPGraph -> E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 4 |
|
f1f1orn |
|- ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> E : dom E -1-1-onto-> ran E ) |
| 5 |
1
|
rneqi |
|- ran E = ran ( iEdg ` G ) |
| 6 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 7 |
5 6
|
eqtr4i |
|- ran E = ( Edg ` G ) |
| 8 |
|
f1oeq3 |
|- ( ran E = ( Edg ` G ) -> ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) ) |
| 9 |
7 8
|
ax-mp |
|- ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) |
| 10 |
4 9
|
sylib |
|- ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> E : dom E -1-1-onto-> ( Edg ` G ) ) |
| 11 |
3 10
|
syl |
|- ( G e. USPGraph -> E : dom E -1-1-onto-> ( Edg ` G ) ) |