| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 2 |
1
|
a1i |
|- ( G e. UPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 3 |
2
|
eleq2d |
|- ( G e. UPGraph -> ( E e. ( Edg ` G ) <-> E e. ran ( iEdg ` G ) ) ) |
| 4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 6 |
4 5
|
upgrf |
|- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 7 |
6
|
frnd |
|- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 8 |
7
|
sseld |
|- ( G e. UPGraph -> ( E e. ran ( iEdg ` G ) -> E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 9 |
|
fveq2 |
|- ( x = E -> ( # ` x ) = ( # ` E ) ) |
| 10 |
9
|
breq1d |
|- ( x = E -> ( ( # ` x ) <_ 2 <-> ( # ` E ) <_ 2 ) ) |
| 11 |
10
|
elrab |
|- ( E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) ) |
| 12 |
|
eldifsn |
|- ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) <-> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) ) |
| 13 |
12
|
biimpi |
|- ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) ) |
| 14 |
13
|
anim1i |
|- ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) /\ ( # ` E ) <_ 2 ) ) |
| 15 |
|
df-3an |
|- ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) <-> ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) /\ ( # ` E ) <_ 2 ) ) |
| 16 |
14 15
|
sylibr |
|- ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) |
| 17 |
16
|
a1i |
|- ( G e. UPGraph -> ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 18 |
11 17
|
biimtrid |
|- ( G e. UPGraph -> ( E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 19 |
8 18
|
syld |
|- ( G e. UPGraph -> ( E e. ran ( iEdg ` G ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 20 |
3 19
|
sylbid |
|- ( G e. UPGraph -> ( E e. ( Edg ` G ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 21 |
20
|
imp |
|- ( ( G e. UPGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) |