Metamath Proof Explorer


Theorem isuspgrim0

Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025)

Ref Expression
Hypotheses isusgrim.v V = Vtx G
isusgrim.w W = Vtx H
isusgrim.e E = Edg G
isusgrim.d D = Edg H
Assertion isuspgrim0 G USHGraph H USHGraph F X F G GraphIso H F : V 1-1 onto W e E F e : E 1-1 onto D

Proof

Step Hyp Ref Expression
1 isusgrim.v V = Vtx G
2 isusgrim.w W = Vtx H
3 isusgrim.e E = Edg G
4 isusgrim.d D = Edg H
5 eqid iEdg G = iEdg G
6 eqid iEdg H = iEdg H
7 1 2 5 6 isgrim G USHGraph H USHGraph F X F G GraphIso H F : V 1-1 onto W j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i
8 3 eleq2i e E e Edg G
9 uspgruhgr G USHGraph G UHGraph
10 5 uhgredgiedgb G UHGraph e Edg G k dom iEdg G e = iEdg G k
11 9 10 syl G USHGraph e Edg G k dom iEdg G e = iEdg G k
12 8 11 bitrid G USHGraph e E k dom iEdg G e = iEdg G k
13 12 3ad2ant1 G USHGraph H USHGraph F X e E k dom iEdg G e = iEdg G k
14 13 ad2antrr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E k dom iEdg G e = iEdg G k
15 14 biimpa G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E k dom iEdg G e = iEdg G k
16 2fveq3 i = k iEdg H j i = iEdg H j k
17 fveq2 i = k iEdg G i = iEdg G k
18 17 imaeq2d i = k F iEdg G i = F iEdg G k
19 16 18 eqeq12d i = k iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
20 19 rspcv k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
21 20 adantl G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
22 uspgruhgr H USHGraph H UHGraph
23 6 uhgrfun H UHGraph Fun iEdg H
24 22 23 syl H USHGraph Fun iEdg H
25 24 3ad2ant2 G USHGraph H USHGraph F X Fun iEdg H
26 25 ad3antrrr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G Fun iEdg H
27 f1of j : dom iEdg G 1-1 onto dom iEdg H j : dom iEdg G dom iEdg H
28 27 adantl G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H j : dom iEdg G dom iEdg H
29 28 ffvelcdmda G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G j k dom iEdg H
30 6 iedgedg Fun iEdg H j k dom iEdg H iEdg H j k Edg H
31 26 29 30 syl2anc G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G iEdg H j k Edg H
32 4 eleq2i iEdg H j k D iEdg H j k Edg H
33 31 32 sylibr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G iEdg H j k D
34 eleq1 iEdg H j k = F iEdg G k iEdg H j k D F iEdg G k D
35 33 34 syl5ibcom G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G iEdg H j k = F iEdg G k F iEdg G k D
36 21 35 syld G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i F iEdg G k D
37 36 ex G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i F iEdg G k D
38 37 com23 G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg G F iEdg G k D
39 38 impr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg G F iEdg G k D
40 39 adantr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E k dom iEdg G F iEdg G k D
41 40 imp G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E k dom iEdg G F iEdg G k D
42 imaeq2 e = iEdg G k F e = F iEdg G k
43 42 eleq1d e = iEdg G k F e D F iEdg G k D
44 41 43 syl5ibrcom G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E k dom iEdg G e = iEdg G k F e D
45 44 rexlimdva G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E k dom iEdg G e = iEdg G k F e D
46 15 45 mpd G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E F e D
47 46 ralrimiva G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E F e D
48 4 eleq2i d D d Edg H
49 6 uhgredgiedgb H UHGraph d Edg H k dom iEdg H d = iEdg H k
50 22 49 syl H USHGraph d Edg H k dom iEdg H d = iEdg H k
51 48 50 bitrid H USHGraph d D k dom iEdg H d = iEdg H k
52 51 3ad2ant2 G USHGraph H USHGraph F X d D k dom iEdg H d = iEdg H k
53 52 ad2antrr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i d D k dom iEdg H d = iEdg H k
54 simprl G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i j : dom iEdg G 1-1 onto dom iEdg H
55 f1ocnvdm j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg H j -1 k dom iEdg G
56 54 55 sylan G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H j -1 k dom iEdg G
57 2fveq3 i = j -1 k iEdg H j i = iEdg H j j -1 k
58 fveq2 i = j -1 k iEdg G i = iEdg G j -1 k
59 58 imaeq2d i = j -1 k F iEdg G i = F iEdg G j -1 k
60 57 59 eqeq12d i = j -1 k iEdg H j i = F iEdg G i iEdg H j j -1 k = F iEdg G j -1 k
61 60 rspccv i dom iEdg G iEdg H j i = F iEdg G i j -1 k dom iEdg G iEdg H j j -1 k = F iEdg G j -1 k
62 61 adantl j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i j -1 k dom iEdg G iEdg H j j -1 k = F iEdg G j -1 k
63 62 adantl G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i j -1 k dom iEdg G iEdg H j j -1 k = F iEdg G j -1 k
64 63 adantr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H j -1 k dom iEdg G iEdg H j j -1 k = F iEdg G j -1 k
65 f1ocnvfv2 j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg H j j -1 k = k
66 54 65 sylan G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H j j -1 k = k
67 66 fveqeq2d G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H j j -1 k = F iEdg G j -1 k iEdg H k = F iEdg G j -1 k
68 eqeq2 iEdg H k = F iEdg G j -1 k d = iEdg H k d = F iEdg G j -1 k
69 68 adantl G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H k = F iEdg G j -1 k d = iEdg H k d = F iEdg G j -1 k
70 simpll1 G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i G USHGraph
71 3 5 uspgriedgedg G USHGraph j -1 k dom iEdg G ∃! e E e = iEdg G j -1 k
72 70 56 71 syl2an2r G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H ∃! e E e = iEdg G j -1 k
73 eqcom iEdg G j -1 k = e e = iEdg G j -1 k
74 73 reubii ∃! e E iEdg G j -1 k = e ∃! e E e = iEdg G j -1 k
75 72 74 sylibr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H ∃! e E iEdg G j -1 k = e
76 f1of1 F : V 1-1 onto W F : V 1-1 W
77 76 ad4antlr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E F : V 1-1 W
78 uspgrupgr G USHGraph G UPGraph
79 78 3ad2ant1 G USHGraph H USHGraph F X G UPGraph
80 79 ad3antrrr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H G UPGraph
81 80 56 jca G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H G UPGraph j -1 k dom iEdg G
82 81 adantr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E G UPGraph j -1 k dom iEdg G
83 1 5 upgrss G UPGraph j -1 k dom iEdg G iEdg G j -1 k V
84 82 83 syl G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E iEdg G j -1 k V
85 8 biimpi e E e Edg G
86 edgupgr G UPGraph e Edg G e 𝒫 Vtx G e e 2
87 80 85 86 syl2an G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E e 𝒫 Vtx G e e 2
88 87 simp1d G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E e 𝒫 Vtx G
89 88 elpwid G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E e Vtx G
90 89 1 sseqtrrdi G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E e V
91 f1imaeq F : V 1-1 W iEdg G j -1 k V e V F iEdg G j -1 k = F e iEdg G j -1 k = e
92 77 84 90 91 syl12anc G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H e E F iEdg G j -1 k = F e iEdg G j -1 k = e
93 92 reubidva G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H ∃! e E F iEdg G j -1 k = F e ∃! e E iEdg G j -1 k = e
94 75 93 mpbird G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H ∃! e E F iEdg G j -1 k = F e
95 94 ad2antrr G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H k = F iEdg G j -1 k d = F iEdg G j -1 k ∃! e E F iEdg G j -1 k = F e
96 eqeq1 d = F iEdg G j -1 k d = F e F iEdg G j -1 k = F e
97 96 reubidv d = F iEdg G j -1 k ∃! e E d = F e ∃! e E F iEdg G j -1 k = F e
98 97 adantl G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H k = F iEdg G j -1 k d = F iEdg G j -1 k ∃! e E d = F e ∃! e E F iEdg G j -1 k = F e
99 95 98 mpbird G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H k = F iEdg G j -1 k d = F iEdg G j -1 k ∃! e E d = F e
100 99 ex G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H k = F iEdg G j -1 k d = F iEdg G j -1 k ∃! e E d = F e
101 69 100 sylbid G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H k = F iEdg G j -1 k d = iEdg H k ∃! e E d = F e
102 101 ex G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H k = F iEdg G j -1 k d = iEdg H k ∃! e E d = F e
103 67 102 sylbid G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H iEdg H j j -1 k = F iEdg G j -1 k d = iEdg H k ∃! e E d = F e
104 64 103 syld G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H j -1 k dom iEdg G d = iEdg H k ∃! e E d = F e
105 56 104 mpd G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H d = iEdg H k ∃! e E d = F e
106 105 rexlimdva G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i k dom iEdg H d = iEdg H k ∃! e E d = F e
107 53 106 sylbid G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i d D ∃! e E d = F e
108 107 ralrimiv G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i d D ∃! e E d = F e
109 imaeq2 x = e F x = F e
110 109 cbvmptv x E F x = e E F e
111 110 f1ompt x E F x : E 1-1 onto D e E F e D d D ∃! e E d = F e
112 47 108 111 sylanbrc G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i x E F x : E 1-1 onto D
113 112 ex G USHGraph H USHGraph F X F : V 1-1 onto W j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i x E F x : E 1-1 onto D
114 113 exlimdv G USHGraph H USHGraph F X F : V 1-1 onto W j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i x E F x : E 1-1 onto D
115 fvex iEdg G V
116 115 dmex dom iEdg G V
117 116 mptex e dom iEdg G iEdg H -1 x E F x iEdg G e V
118 117 a1i G USHGraph H USHGraph F X F : V 1-1 onto W x E F x : E 1-1 onto D e dom iEdg G iEdg H -1 x E F x iEdg G e V
119 eqid e dom iEdg G iEdg H -1 x E F x iEdg G e = e dom iEdg G iEdg H -1 x E F x iEdg G e
120 1 2 3 4 5 6 110 119 isuspgrim0lem G USHGraph H USHGraph F X F : V 1-1 onto W x E F x : E 1-1 onto D e dom iEdg G iEdg H -1 x E F x iEdg G e : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H e dom iEdg G iEdg H -1 x E F x iEdg G e i = F iEdg G i
121 f1oeq1 j = e dom iEdg G iEdg H -1 x E F x iEdg G e j : dom iEdg G 1-1 onto dom iEdg H e dom iEdg G iEdg H -1 x E F x iEdg G e : dom iEdg G 1-1 onto dom iEdg H
122 fveq1 j = e dom iEdg G iEdg H -1 x E F x iEdg G e j i = e dom iEdg G iEdg H -1 x E F x iEdg G e i
123 122 fveqeq2d j = e dom iEdg G iEdg H -1 x E F x iEdg G e iEdg H j i = F iEdg G i iEdg H e dom iEdg G iEdg H -1 x E F x iEdg G e i = F iEdg G i
124 123 ralbidv j = e dom iEdg G iEdg H -1 x E F x iEdg G e i dom iEdg G iEdg H j i = F iEdg G i i dom iEdg G iEdg H e dom iEdg G iEdg H -1 x E F x iEdg G e i = F iEdg G i
125 121 124 anbi12d j = e dom iEdg G iEdg H -1 x E F x iEdg G e j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e dom iEdg G iEdg H -1 x E F x iEdg G e : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H e dom iEdg G iEdg H -1 x E F x iEdg G e i = F iEdg G i
126 118 120 125 spcedv G USHGraph H USHGraph F X F : V 1-1 onto W x E F x : E 1-1 onto D j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i
127 126 ex G USHGraph H USHGraph F X F : V 1-1 onto W x E F x : E 1-1 onto D j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i
128 114 127 impbid G USHGraph H USHGraph F X F : V 1-1 onto W j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i x E F x : E 1-1 onto D
129 f1oeq1 x E F x = e E F e x E F x : E 1-1 onto D e E F e : E 1-1 onto D
130 110 129 mp1i G USHGraph H USHGraph F X F : V 1-1 onto W x E F x : E 1-1 onto D e E F e : E 1-1 onto D
131 128 130 bitrd G USHGraph H USHGraph F X F : V 1-1 onto W j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i e E F e : E 1-1 onto D
132 131 pm5.32da G USHGraph H USHGraph F X F : V 1-1 onto W j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F : V 1-1 onto W e E F e : E 1-1 onto D
133 7 132 bitrd G USHGraph H USHGraph F X F G GraphIso H F : V 1-1 onto W e E F e : E 1-1 onto D