| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isusgrim.v |
|
| 2 |
|
isusgrim.w |
|
| 3 |
|
isusgrim.e |
|
| 4 |
|
isusgrim.d |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 2 5 6
|
isgrim |
|
| 8 |
3
|
eleq2i |
|
| 9 |
|
uspgruhgr |
|
| 10 |
5
|
uhgredgiedgb |
|
| 11 |
9 10
|
syl |
|
| 12 |
8 11
|
bitrid |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
14
|
biimpa |
|
| 16 |
|
2fveq3 |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
imaeq2d |
|
| 19 |
16 18
|
eqeq12d |
|
| 20 |
19
|
rspcv |
|
| 21 |
20
|
adantl |
|
| 22 |
|
uspgruhgr |
|
| 23 |
6
|
uhgrfun |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
3ad2ant2 |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
|
f1of |
|
| 28 |
27
|
adantl |
|
| 29 |
28
|
ffvelcdmda |
|
| 30 |
6
|
iedgedg |
|
| 31 |
26 29 30
|
syl2anc |
|
| 32 |
4
|
eleq2i |
|
| 33 |
31 32
|
sylibr |
|
| 34 |
|
eleq1 |
|
| 35 |
33 34
|
syl5ibcom |
|
| 36 |
21 35
|
syld |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
com23 |
|
| 39 |
38
|
impr |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
imp |
|
| 42 |
|
imaeq2 |
|
| 43 |
42
|
eleq1d |
|
| 44 |
41 43
|
syl5ibrcom |
|
| 45 |
44
|
rexlimdva |
|
| 46 |
15 45
|
mpd |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
4
|
eleq2i |
|
| 49 |
6
|
uhgredgiedgb |
|
| 50 |
22 49
|
syl |
|
| 51 |
48 50
|
bitrid |
|
| 52 |
51
|
3ad2ant2 |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
|
simprl |
|
| 55 |
|
f1ocnvdm |
|
| 56 |
54 55
|
sylan |
|
| 57 |
|
2fveq3 |
|
| 58 |
|
fveq2 |
|
| 59 |
58
|
imaeq2d |
|
| 60 |
57 59
|
eqeq12d |
|
| 61 |
60
|
rspccv |
|
| 62 |
61
|
adantl |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
adantr |
|
| 65 |
|
f1ocnvfv2 |
|
| 66 |
54 65
|
sylan |
|
| 67 |
66
|
fveqeq2d |
|
| 68 |
|
eqeq2 |
|
| 69 |
68
|
adantl |
|
| 70 |
|
simpll1 |
|
| 71 |
3 5
|
uspgriedgedg |
|
| 72 |
70 56 71
|
syl2an2r |
|
| 73 |
|
eqcom |
|
| 74 |
73
|
reubii |
|
| 75 |
72 74
|
sylibr |
|
| 76 |
|
f1of1 |
|
| 77 |
76
|
ad4antlr |
|
| 78 |
|
uspgrupgr |
|
| 79 |
78
|
3ad2ant1 |
|
| 80 |
79
|
ad3antrrr |
|
| 81 |
80 56
|
jca |
|
| 82 |
81
|
adantr |
|
| 83 |
1 5
|
upgrss |
|
| 84 |
82 83
|
syl |
|
| 85 |
8
|
biimpi |
|
| 86 |
|
edgupgr |
|
| 87 |
80 85 86
|
syl2an |
|
| 88 |
87
|
simp1d |
|
| 89 |
88
|
elpwid |
|
| 90 |
89 1
|
sseqtrrdi |
|
| 91 |
|
f1imaeq |
|
| 92 |
77 84 90 91
|
syl12anc |
|
| 93 |
92
|
reubidva |
|
| 94 |
75 93
|
mpbird |
|
| 95 |
94
|
ad2antrr |
|
| 96 |
|
eqeq1 |
|
| 97 |
96
|
reubidv |
|
| 98 |
97
|
adantl |
|
| 99 |
95 98
|
mpbird |
|
| 100 |
99
|
ex |
|
| 101 |
69 100
|
sylbid |
|
| 102 |
101
|
ex |
|
| 103 |
67 102
|
sylbid |
|
| 104 |
64 103
|
syld |
|
| 105 |
56 104
|
mpd |
|
| 106 |
105
|
rexlimdva |
|
| 107 |
53 106
|
sylbid |
|
| 108 |
107
|
ralrimiv |
|
| 109 |
|
imaeq2 |
|
| 110 |
109
|
cbvmptv |
|
| 111 |
110
|
f1ompt |
|
| 112 |
47 108 111
|
sylanbrc |
|
| 113 |
112
|
ex |
|
| 114 |
113
|
exlimdv |
|
| 115 |
|
fvex |
|
| 116 |
115
|
dmex |
|
| 117 |
116
|
mptex |
|
| 118 |
117
|
a1i |
|
| 119 |
|
eqid |
|
| 120 |
1 2 3 4 5 6 110 119
|
isuspgrim0lem |
|
| 121 |
|
f1oeq1 |
|
| 122 |
|
fveq1 |
|
| 123 |
122
|
fveqeq2d |
|
| 124 |
123
|
ralbidv |
|
| 125 |
121 124
|
anbi12d |
|
| 126 |
118 120 125
|
spcedv |
|
| 127 |
126
|
ex |
|
| 128 |
114 127
|
impbid |
|
| 129 |
|
f1oeq1 |
|
| 130 |
110 129
|
mp1i |
|
| 131 |
128 130
|
bitrd |
|
| 132 |
131
|
pm5.32da |
|
| 133 |
7 132
|
bitrd |
|