Metamath Proof Explorer


Theorem isuspgrimlem

Description: Lemma for isuspgrim . (Contributed by AV, 27-Apr-2025)

Ref Expression
Hypotheses isusgrim.v V = Vtx G
isusgrim.w W = Vtx H
isusgrim.e E = Edg G
isusgrim.d D = Edg H
Assertion isuspgrimlem G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E F e : E 1-1 onto D

Proof

Step Hyp Ref Expression
1 isusgrim.v V = Vtx G
2 isusgrim.w W = Vtx H
3 isusgrim.e E = Edg G
4 isusgrim.d D = Edg H
5 uspgrupgr G USHGraph G UPGraph
6 5 adantr G USHGraph H USHGraph G UPGraph
7 6 adantr G USHGraph H USHGraph F : V 1-1 onto W G UPGraph
8 7 adantr G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D G UPGraph
9 1 3 upgredg G UPGraph e E a V b V e = a b
10 8 9 sylan G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E a V b V e = a b
11 preq12 x = a y = b x y = a b
12 11 eleq1d x = a y = b x y E a b E
13 fveq2 x = a F x = F a
14 13 adantr x = a y = b F x = F a
15 fveq2 y = b F y = F b
16 15 adantl x = a y = b F y = F b
17 14 16 preq12d x = a y = b F x F y = F a F b
18 17 eleq1d x = a y = b F x F y D F a F b D
19 12 18 bibi12d x = a y = b x y E F x F y D a b E F a F b D
20 19 rspc2gv a V b V x V y V x y E F x F y D a b E F a F b D
21 20 com12 x V y V x y E F x F y D a V b V a b E F a F b D
22 21 adantl G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V a b E F a F b D
23 22 imp G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V a b E F a F b D
24 f1ofn F : V 1-1 onto W F Fn V
25 24 ad3antlr G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V F Fn V
26 simprl G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V a V
27 simpr a V b V b V
28 27 adantl G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V b V
29 fnimapr F Fn V a V b V F a b = F a F b
30 25 26 28 29 syl3anc G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V F a b = F a F b
31 30 eqcomd G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V F a F b = F a b
32 31 eleq1d G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V F a F b D F a b D
33 23 32 bitrd G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V a b E F a b D
34 33 adantr G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V e = a b a b E F a b D
35 34 biimpd G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V e = a b a b E F a b D
36 eleq1 e = a b e E a b E
37 imaeq2 e = a b F e = F a b
38 37 eleq1d e = a b F e D F a b D
39 36 38 imbi12d e = a b e E F e D a b E F a b D
40 39 adantl G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V e = a b e E F e D a b E F a b D
41 35 40 mpbird G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V e = a b e E F e D
42 41 exp31 G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a V b V e = a b e E F e D
43 42 com23 G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e = a b a V b V e E F e D
44 43 com24 G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E a V b V e = a b F e D
45 44 imp G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E a V b V e = a b F e D
46 45 rexlimdvv G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E a V b V e = a b F e D
47 10 46 mpd G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E F e D
48 47 ex G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E F e D
49 48 ralrimiv G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E F e D
50 uspgrupgr H USHGraph H UPGraph
51 50 ad3antlr G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D H UPGraph
52 2 4 upgredg H UPGraph d D a W b W d = a b
53 51 52 sylan G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D d D a W b W d = a b
54 f1ofo F : V 1-1 onto W F : V onto W
55 foelrn F : V onto W a W m V a = F m
56 55 ex F : V onto W a W m V a = F m
57 foelrn F : V onto W b W n V b = F n
58 57 ex F : V onto W b W n V b = F n
59 56 58 anim12d F : V onto W a W b W m V a = F m n V b = F n
60 54 59 syl F : V 1-1 onto W a W b W m V a = F m n V b = F n
61 60 adantl G USHGraph H USHGraph F : V 1-1 onto W a W b W m V a = F m n V b = F n
62 61 adantr G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V a = F m n V b = F n
63 62 imp G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V a = F m n V b = F n
64 preq12 a = F m b = F n a b = F m F n
65 64 eqeq2d a = F m b = F n d = a b d = F m F n
66 65 ancoms b = F n a = F m d = a b d = F m F n
67 66 adantl G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V b = F n a = F m d = a b d = F m F n
68 preq12 x = m y = n x y = m n
69 68 eleq1d x = m y = n x y E m n E
70 fveq2 x = m F x = F m
71 70 adantr x = m y = n F x = F m
72 fveq2 y = n F y = F n
73 72 adantl x = m y = n F y = F n
74 71 73 preq12d x = m y = n F x F y = F m F n
75 74 eleq1d x = m y = n F x F y D F m F n D
76 69 75 bibi12d x = m y = n x y E F x F y D m n E F m F n D
77 76 rspc2gv m V n V x V y V x y E F x F y D m n E F m F n D
78 77 adantl G USHGraph H USHGraph F : V 1-1 onto W m V n V x V y V x y E F x F y D m n E F m F n D
79 24 adantl G USHGraph H USHGraph F : V 1-1 onto W F Fn V
80 79 anim1i G USHGraph H USHGraph F : V 1-1 onto W m V n V F Fn V m V n V
81 3anass F Fn V m V n V F Fn V m V n V
82 80 81 sylibr G USHGraph H USHGraph F : V 1-1 onto W m V n V F Fn V m V n V
83 fnimapr F Fn V m V n V F m n = F m F n
84 82 83 syl G USHGraph H USHGraph F : V 1-1 onto W m V n V F m n = F m F n
85 84 eqcomd G USHGraph H USHGraph F : V 1-1 onto W m V n V F m F n = F m n
86 simpr G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E F m n D m n E F m n D
87 simpr G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E m n E
88 reueq m n E ∃! e E e = m n
89 87 88 sylib G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E ∃! e E e = m n
90 eqcom m n = e e = m n
91 90 reubii ∃! e E m n = e ∃! e E e = m n
92 89 91 sylibr G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E ∃! e E m n = e
93 f1of1 F : V 1-1 onto W F : V 1-1 W
94 93 adantl G USHGraph H USHGraph F : V 1-1 onto W F : V 1-1 W
95 94 ad5ant12 G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E e E F : V 1-1 W
96 prssi m V n V m n V
97 96 ad3antlr G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E e E m n V
98 uspgruhgr G USHGraph G UHGraph
99 98 adantr G USHGraph H USHGraph G UHGraph
100 99 ad5ant12 G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E G UHGraph
101 3 eleq2i e E e Edg G
102 101 biimpi e E e Edg G
103 edguhgr G UHGraph e Edg G e 𝒫 Vtx G
104 1 pweqi 𝒫 V = 𝒫 Vtx G
105 103 104 eleqtrrdi G UHGraph e Edg G e 𝒫 V
106 100 102 105 syl2an G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E e E e 𝒫 V
107 106 elpwid G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E e E e V
108 f1imaeq F : V 1-1 W m n V e V F m n = F e m n = e
109 95 97 107 108 syl12anc G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E e E F m n = F e m n = e
110 109 reubidva G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E ∃! e E F m n = F e ∃! e E m n = e
111 92 110 mpbird G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E ∃! e E F m n = F e
112 111 ex G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E ∃! e E F m n = F e
113 112 adantr G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E F m n D m n E ∃! e E F m n = F e
114 86 113 sylbird G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E F m n D F m n D ∃! e E F m n = F e
115 114 ex G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E F m n D F m n D ∃! e E F m n = F e
116 eleq1 F m F n = F m n F m F n D F m n D
117 116 bibi2d F m F n = F m n m n E F m F n D m n E F m n D
118 eqeq1 F m F n = F m n F m F n = F e F m n = F e
119 118 reubidv F m F n = F m n ∃! e E F m F n = F e ∃! e E F m n = F e
120 116 119 imbi12d F m F n = F m n F m F n D ∃! e E F m F n = F e F m n D ∃! e E F m n = F e
121 117 120 imbi12d F m F n = F m n m n E F m F n D F m F n D ∃! e E F m F n = F e m n E F m n D F m n D ∃! e E F m n = F e
122 115 121 syl5ibrcom G USHGraph H USHGraph F : V 1-1 onto W m V n V F m F n = F m n m n E F m F n D F m F n D ∃! e E F m F n = F e
123 85 122 mpd G USHGraph H USHGraph F : V 1-1 onto W m V n V m n E F m F n D F m F n D ∃! e E F m F n = F e
124 78 123 syld G USHGraph H USHGraph F : V 1-1 onto W m V n V x V y V x y E F x F y D F m F n D ∃! e E F m F n = F e
125 124 impancom G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D m V n V F m F n D ∃! e E F m F n = F e
126 125 adantr G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V F m F n D ∃! e E F m F n = F e
127 126 impl G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V F m F n D ∃! e E F m F n = F e
128 eleq1 d = F m F n d D F m F n D
129 eqeq1 d = F m F n d = F e F m F n = F e
130 129 reubidv d = F m F n ∃! e E d = F e ∃! e E F m F n = F e
131 128 130 imbi12d d = F m F n d D ∃! e E d = F e F m F n D ∃! e E F m F n = F e
132 127 131 syl5ibrcom G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V d = F m F n d D ∃! e E d = F e
133 132 adantr G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V b = F n a = F m d = F m F n d D ∃! e E d = F e
134 67 133 sylbid G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V b = F n a = F m d = a b d D ∃! e E d = F e
135 134 exp32 G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V b = F n a = F m d = a b d D ∃! e E d = F e
136 135 rexlimdva G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V n V b = F n a = F m d = a b d D ∃! e E d = F e
137 136 com23 G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V a = F m n V b = F n d = a b d D ∃! e E d = F e
138 137 rexlimdva G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V a = F m n V b = F n d = a b d D ∃! e E d = F e
139 138 impd G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W m V a = F m n V b = F n d = a b d D ∃! e E d = F e
140 63 139 mpd G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W d = a b d D ∃! e E d = F e
141 140 com23 G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D a W b W d D d = a b ∃! e E d = F e
142 141 impancom G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D d D a W b W d = a b ∃! e E d = F e
143 142 rexlimdvv G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D d D a W b W d = a b ∃! e E d = F e
144 53 143 mpd G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D d D ∃! e E d = F e
145 144 ralrimiva G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D d D ∃! e E d = F e
146 eqid e E F e = e E F e
147 146 f1ompt e E F e : E 1-1 onto D e E F e D d D ∃! e E d = F e
148 49 145 147 sylanbrc G USHGraph H USHGraph F : V 1-1 onto W x V y V x y E F x F y D e E F e : E 1-1 onto D